
TEAM LinG

by Stephen Randy Davis
and Chuck Sphar

C# 2005
FOR

DUMmIES
‰

01_597043 ffirs.qxd 9/20/05 1:05 PM Page i

C# 2005 For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005927620

ISBN-13: 978-0-7645-9704-6

ISBN-10: 0-7645-9704-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RR/RQ/QV/IN

01_597043 ffirs.qxd 9/20/05 1:05 PM Page ii

www.wiley.com

About the Authors
Stephen R. Davis, who goes by the name of Randy, lives with his wife and son
near Dallas, Texas. He and his family have written numerous books, including
C++ For Dummies and C++ Weekend Crash Course. Stephen works for L-3
Communications.

Chuck Sphar escaped Microsoft’s C++ documentation camps in 1997, after six
years’ hard labor as a senior technical writer. He’s perpetrated two previous
tomes, one on object-oriented programming for the Mac and one on Microsoft’s
MFC class library. He’s currently finishing a novel about ancient Rome
(againstrome.com) and gobbling mouthfuls of .NET programming. Chuck
can be reached for praise and minor nits at csharp@chucksphar.com.

01_597043 ffirs.qxd 9/20/05 1:05 PM Page iii

01_597043 ffirs.qxd 9/20/05 1:05 PM Page iv

Dedication
For Pam and the Moms — Chuck Sphar

Acknowledgments
I would like to thank Claudette Moore and Debbie McKenna, who
brought the book to me. I also want to thank Randy Davis for being
willing to hand over his baby to a guy he didn’t know. I’d have
found that very hard, and I hope I’ve done justice in extending his
excellent first edition.

Many thanks are due as well to the fine folks at Wiley, starting with
Acquisitions Editor Katie Feltman and Project Editor Kim Darosett.
Kim’s astute shaping helped turn me into a For Dummies author, no
mean feat. I’d also like to thank Chris Bower for his sharp technical
eye and excellent C# knowledge, John Edwards for much of the
book’s consistency, and the art, media, and other production folks
who turn my files into a real book.

The most heartfelt thanks are due to Pam for constant encour-
agement and much enabling. She’s my partner in all things.
— Chuck Sphar

01_597043 ffirs.qxd 9/20/05 1:05 PM Page v

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Kim Darosett

Acquisitions Editor: Katie Feltman

Copy Editor: John Edwards

Technical Editor: Chris Bower

Editorial Manager: Leah Cameron

Media Project Supervisor: Laura Moss

Media Development Specialists: Angie Denny,
Travis Silvers, Kit Malone, Steve Kudirka

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Jennifer Theriot

Layout and Graphics: Carl Byers, Andrea Dahl,
Joyce Haughey, Stephanie D. Jumper,
Heather Ryan, Erin Zeltner

Proofreaders: Leeann Harney,
Carl William Pierce, Dwight Ramsey,
TECHBOOKS Production Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_597043 ffirs.qxd 9/20/05 1:05 PM Page vi

www.dummies.com

Contents at a Glance
Introduction ..1

Part I: Creating Your First C# Programs9
Chapter 1: Creating Your First C# Windows Program ...11
Chapter 2: Creating Your First C# Console Application ...29

Part II: Basic C# Programming37
Chapter 3: Living with Variability — Declaring Value-Type Variables39
Chapter 4: Smooth Operators ..57
Chapter 5: Controlling Program Flow ...71

Part III: Object-Based Programming99
Chapter 6: Collecting Data — The Class and the Array ..101
Chapter 7: Putting on Some High-Class Functions ..127
Chapter 8: Class Methods ..163
Chapter 9: Stringing in the Key of C# ..187

Part IV: Object-Oriented Programming211
Chapter 10: Object-Oriented Programming — What’s It All About?213
Chapter 11: Holding a Class Responsible ...221
Chapter 12: Inheritance — Is That All I Get? ..251
Chapter 13: Poly-what-ism? ..273

Part V: Beyond Basic Classes301
Chapter 14: When a Class Isn’t a Class — The Interface and the Structure303
Chapter 15: Asking Your Pharmacist about Generics ...333

Part VI: The Part of Tens ..365
Chapter 16: The 10 Most Common Build Errors (And How to Fix Them)367
Chapter 17: The 10 Most Significant Differences between C# and C++379

Appendix: About the CD ...385

02_597043 ftoc.qxd 9/20/05 1:05 PM Page vii

Bonus Chapters on the CD-ROM!CD
Bonus Chapter 1: Some Exceptional Exceptions ..CD1
Bonus Chapter 2: Handling Files and Libraries in C# ..CD27
Bonus Chapter 3: Stepping through Collections ..CD55
Bonus Chapter 4: Using the Visual Studio Interface ..CD99
Bonus Chapter 5: C# on the Cheap ..CD139

Index ...391

End-User License AgreementBack of Book

02_597043 ftoc.qxd 9/20/05 1:05 PM Page viii

Table of Contents
Introduction ...1

What’s New in C# 2.0 ..2
About This Book ..3
What You Need to Use the Book ...3
How to Use This Book ..4
How This Book Is Organized ..4

Part I: Creating Your First C# Programs ...4
Part II: Basic C# Programming ...4
Part III: Object-Based Programming ..5
Part IV: Object-Oriented Programming ...5
Part V: Beyond Basic Classes ...5
Part VI: The Part of Tens ..5
About the CD-ROM ..6

Icons Used in This Book ...6
Conventions Used in This Book ..7
Where to Go from Here ...7

Part I: Creating Your First C# Programs9

Chapter 1: Creating Your First C# Windows Program 11
Getting a Handle on Computer Languages, C#, and .NET11

What’s a program? ...12
What’s C#? ..12
What’s .NET? ..13
What is Visual Studio 2005? What about Visual C#?14

Creating a Windows Application with C# ...15
Creating the template ...15
Building and running your first Windows Forms program18
Painting pretty pictures ..20
Make it do something, Daddy ..25
Trying out the final product ...27
Visual Basic 6.0 programmers, beware! ..28

Chapter 2: Creating Your First C# Console Application 29
Creating a Console Application Template ..29

Creating the source program ...30
Taking it out for a test drive ...31

Creating Your First Real Console App ..32
Reviewing the Console Application Template ...33

The program framework ...33
Comments ..34
The meat of the program ..34

02_597043 ftoc.qxd 9/20/05 1:05 PM Page ix

Part II: Basic C# Programming37

Chapter 3: Living with Variability —
Declaring Value-Type Variables .39

Declaring a Variable ..40
What’s an int? ..40

Rules for declaring variables ...42
Variations on a theme — different types of int42

Representing Fractions ..43
Handling Floating Point Variables ...44

Declaring a floating point variable ..45
Converting some more temperatures ...46
Examining some limitations of floating point variables46

Using the Decimal Type — A Combination of Integers and Floats48
Declaring a decimal ...48
Comparing decimals, integers, and floating point types49

Examining the bool Type — Is It Logical? ..49
Checking Out Character Types ...50

Char variable type ...50
Special char types ...50
The string type ..51

What’s a Value-Type? ..52
Comparing string and char ..53
Declaring Numeric Constants ..54
Changing Types — The Cast ..55

Chapter 4: Smooth Operators .57
Performing Arithmetic ..57

Simple operators ...57
Operating orders ...58
The assignment operator ...60
The increment operator ...61

Performing Logical Comparisons — Is That Logical?62
Comparing floating point numbers:

Is your float bigger than mine? ..63
Compounding the confusion with

compound logical operations ..64
Finding the Perfect Date — Matching Expression Types66

Calculating the type of an operation ..67
Assigning types ..68

The Ternary Operator — I Wish It Were a Bird and Would Fly Away69

Chapter 5: Controlling Program Flow .71
Controlling Program Flow ..72

Introducing the if statement ..73
Examining the else statement ..75
Avoiding even the else ..76
Embedded if statements ...77

C# 2005 For Dummies x

02_597043 ftoc.qxd 9/20/05 1:05 PM Page x

Looping Commands ..80
Introducing the while loop ...80
Using the do...while loop ..84
Breaking up is easy to do ...84
Looping until you get it right ...86
Focusing on scope rules ...89

Understanding the Most Common Control: The for Loop90
An example ...91
Why do you need another loop? ...91

Nested Loops ...92
The switch Control ...96
The Lowly goto Statement ...98

Part III: Object-Based Programming99

Chapter 6: Collecting Data — The Class and the Array 101
Showing Some Class ...102

Defining a class ..102
What’s the object? ...103
Accessing the members of an object ..104
Can you give me references? ..107
Classes that contain classes are the

happiest classes in the world ...108
Generating static in class members ..110
Defining const data members ..111

The C# Array ..111
The argument for the array ..112
The fixed-value array ..112
The variable-length array ...114

Lining Up Arrays of Objects ...118
A Flow Control Made foreach Array ...120
Sorting through Arrays of Objects ..122

Chapter 7: Putting on Some High-Class Functions 127
Defining and Using a Function ...127
An Example Function for Your Files ..129
Having Arguments with Functions ..135

Passing an argument to a function ..136
Passing multiple arguments to functions136
Matching argument definitions with usage138
Overloading a function does not mean

giving it too much to do ..139
Implementing default arguments ...140
Passing value-type arguments ...142

Returning Values after Christmas ...147
Returning a value via return postage ..147
Returning a value using pass by reference148
When do I return and when do I out? ...149
Defining a function with no value ..152

xiTable of Contents

02_597043 ftoc.qxd 9/20/05 1:05 PM Page xi

The Main() Deal — Passing Arguments to a Program153
Passing arguments from a DOS prompt ..155
Passing arguments from a window ...157
Passing arguments from Visual Studio 2005159

Chapter 8: Class Methods .163
Passing an Object to a Function ..163
Defining Object Functions and Methods ..165

Defining a static member function ..165
Defining a method ...167
Expanding a method’s full name ...168

Accessing the Current Object ..169
What is the this keyword? ..171
When is this explicit? ..172
What happens when I don’t have this? ...174

Getting Help from Visual Studio — Auto-Complete176
Getting help on built-in functions from the System Library177
Getting help with your own functions and methods179
Adding to the help ...180
Generating XML documentation ...185

Chapter 9: Stringing in the Key of C# .187
Performing Common Operations on a String ..188

The union is indivisible, and so are strings188
Equality for all strings: The Compare() method189
Would you like your compares with or without case?193
What if I want to switch case? ...193
Reading character input ...194
Parsing numeric input ..196
Handling a series of numbers ..198

Controlling Output Manually ...200
Using the Trim() and Pad() methods ..201
Using the Concatenate function ..203
Let’s Split() that concatenate program ..205

Controlling String.Format() ...206

Part IV: Object-Oriented Programming211

Chapter 10: Object-Oriented Programming —
What’s It All About? .213

Object-Oriented Concept #1 — Abstraction ..213
Preparing functional nachos ..214
Preparing object-oriented nachos ...215

Object-Oriented Concept #2 — Classification ...215
Why Classify? ...216
Object-Oriented Concept #3 — Usable Interfaces217
Object-Oriented Concept #4 — Access Control218
How Does C# Support Object-Oriented Concepts?219

C# 2005 For Dummies xii

02_597043 ftoc.qxd 9/20/05 1:05 PM Page xii

Chapter 11: Holding a Class Responsible .221
Restricting Access to Class Members ..221

A public example of public BankAccount222
Jumping ahead — other levels of security224

Why Worry about Access Control? ...225
Accessor methods ...226
Access control to the rescue — an example227
So what? ..230
Defining class properties ..231

Getting Your Objects Off to a Good Start — Constructors233
The C#-Provided Constructor ...233
The Default Constructor ..235

Constructing something ...236
Executing the constructor from the debugger238
Initializing an object directly — the default constructor241
Seeing that construction stuff with initializers242

Overloading the Constructor (Is That Like
Overtaxing a Carpenter?) ...243

Avoiding Duplication among Constructors ...245
Being Object Stingy ...249

Chapter 12: Inheritance — Is That All I Get? .251
Inheriting a Class ...252
Why Do You Need Inheritance? ...253
A More Involved Example — Inheriting from a BankAccount Class254
IS_A versus HAS_A — I’m So Confused ..257

The IS_A relationship ..257
Gaining access to BankAccount through containment258
The HAS_A relationship ..259

When to IS_A and When to HAS_A? ..260
Other Features That Support Inheritance ..261

Changing class ...261
Invalid casts at run time ...262
Avoiding invalid conversions using the is and as keywords263

Inheritance and the Constructor ...265
Invoking the default base class constructor265
Passing arguments to the base class

constructor — mama sing base ...266
The Updated BankAccount Class ..269
The Destructor ..271

Chapter 13: Poly-what-ism? .273
Overloading an Inherited Method ...274

It’s a simple case of function overloading274
Different class, different method ...275
Peek-a-boo — hiding a base class method275
Calling back to base ..280

xiiiTable of Contents

02_597043 ftoc.qxd 9/20/05 1:05 PM Page xiii

Polymorphism ...282
What’s wrong with using the declared type every time?283
Using “is” to access a hidden method polymorphically285
Declaring a method virtual ..286

C# During Its Abstract Period ..288
Class factoring ...288
I’m left with nothing but a concept — the abstract class293
How do you use an abstract class? ...294
Creating an abstract object — not! ...296

Restarting a Class Hierarchy ...296
Sealing a Class ...300

Part V: Beyond Basic Classes301

Chapter 14: When a Class Isn’t a Class —
The Interface and the Structure .303

What Is CAN_BE_USED_AS? ...303
What Is an Interface? ..305
Can I Get a Short Example? ..306
Can I See a Program That CAN_BE_USED_AS an Example?307

Creating your own interface at home in your spare time308
Predefined interfaces ..309
Putting it all together ..311

Inheriting an Interface ..316
Facing an Abstract Interface ..316
The C# Structure Has No Class ...319

The C# structure ..320
The structure constructor ...322
The wily methods of a structure ...323
Putting a struct through its paces in an example323

“Oh, the Value and the Reference Can Be Friends . . .” —
Unifying the Type System ...327

Predefined structure types ..327
So, how do common structures unify the type system?

An example ...328
Boxing and unboxing value types ...330

Chapter 15: Asking Your Pharmacist about Generics 333
Getting to Know Nongeneric Collections ...334

Inventorying nongeneric collections ..334
Using nongeneric collections ...335

Writing a New Prescription: Generics ...336
Generics are type-safe ...336
Generics are efficient ..337

Using Generic Collections ..338
Figuring out <T> ...338
Using List<T> ...338

C# 2005 For Dummies xiv

02_597043 ftoc.qxd 9/20/05 1:05 PM Page xiv

Classy Generics: Writing Your Own ..340
Shipping packages at OOPs ...341
Queuing at OOPs: PriorityQueue ...341
Unwrapping the package ..345
Touring Main() ..347
Writing generic code the easy way ...348
Saving PriorityQueue for last ...349
Tending to unfinished business ...351

Generically Methodical ..353
Generic methods in nongeneric classes ...355
Generic methods in generic classes ...356
You may need to constrain a generic method, too356

Up Against the (Generic) Interface ...357
Nongeneric vs. generic interfaces ...357
Using a (nongeneric) Simple Factory class358
Building a generic factory ..359

Part VI: The Part of Tens ...365

Chapter 16: The 10 Most Common Build Errors
(And How to Fix Them) .367

The name ‘memberName’ does not exist in the class
or namespace ‘className’ ...368

Cannot implicitly convert type ‘x’ into ‘y’369
‘className.memberName’ is inaccessible

due to its protection level ..371
Use of unassigned local variable ‘n’ ..372
Unable to copy the file ‘programName.exe’ to

‘programName.exe’. The process cannot373
‘subclassName.methodName’ hides inherited member

‘baseclassName.methodName’. Use the new keyword
if hiding was intended ...374

‘subclassName’ : cannot inherit from sealed class
‘baseclassName’ ...375

‘className’ does not implement interface member
‘methodName’ ..376

‘methodName’ : not all code paths return a value376
} expected ...377

Chapter 17: The 10 Most Significant Differences
between C# and C++ .379

No Global Data or Functions ..380
All Objects Are Allocated Off the Heap ..380
Pointer Variables Are All but Disallowed ...381
C# Generics Are Like C++ Templates — or Are They?381
I’ll Never Include a File Again ..382
Don’t Construct — Initialize ..382

xvTable of Contents

02_597043 ftoc.qxd 9/20/05 1:05 PM Page xv

Define Your Variable Types Well ...383
No Multiple Inheriting ...383
Projecting a Good Interface ...383
Unified Type System ...384

Appendix: About the CD ..385
System Requirements ...385
Using the CD ...386
What You’ll Find on the CD ..387

The C# programs ...387
Five bonus chapters ..388
NUnit ...389
SharpDevelop ...389
TextPad ...389

Troubleshooting ..389

Bonus Chapters on the CD-ROM!..................................CD

Bonus Chapter 1: Some Exceptional Exceptions CD1
Handling an Error the Old-Fashioned Way — (Re)Turn ItCD1

Returning an error indication ...CD4
I’m here to report, that seems fine to meCD7

Using an Exceptional Error-Reporting MechanismCD9
Can I Get an Example? ...CD10
Creating Your Own Exception Class ..CD13
Assigning Multiple Catch Blocks ..CD15

Letting some throws slip through your fingersCD17
Rethrowing an object ...CD20
Thinking through how you should respond to an exceptionCD21

Overriding the Exception Class ..CD22

Bonus Chapter 2: Handling Files and Libraries in C# CD27
Dividing a Single Program into Multiple Source FilesCD28
Dividing a Single Program into Multiple AssembliesCD29
Collecting Source Files into Namespaces ...CD30

Declaring a namespace ..CD31
Seeing the importance of namespaces ..CD32
Accessing classes in the same namespace

with fully qualified names ..CD34
Using a namespace ...CD35
How about using a fully qualified example?CD36

Collecting Classes into Class Libraries ...CD39
Creating a class library project ..CD39
Creating classes for the library ..CD40
Creating a “driver” project ..CD41

C# 2005 For Dummies xvi

02_597043 ftoc.qxd 9/20/05 1:05 PM Page xvi

Collecting Data into Files ..CD43
Using StreamWriter ..CD45
Improving your reading speed and

comprehension through StreamReaderCD50

Bonus Chapter 3: Stepping through Collections CD55
Iterating through a Directory of Files ..CD55
Writing Your Own Collection Class: The Linked ListCD62

An example linked-list container ..CD63
Why bother with a linked list? ..CD73

Iterating foreach Collections: Iterators ...CD73
Accessing a collection: The general problemCD74
Letting C# access data foreach containerCD76

Accessing Collections the Array Way: IndexersCD77
Indexer format ..CD78
Example indexer program ...CD78

Looping around the Iterator Block ..CD82
Iterating days of the month: A first exampleCD87
What’s a collection, really? ...CD89
Iterator syntax gives up so easily ...CD90
Iterator blocks of all shapes and sizes ..CD92
Where to put your iterator ..CD95

Bonus Chapter 4: Using the Visual Studio Interface CD99
Customizing the Window Layout ...CD100

Examining the window display statesCD100
Hiding a window ...CD103
Rearranging windows ..CD103
Stacking windows ...CD105
More cool nifties, ’er, “productivity tools”CD106

Stirring the Solution Explorer ...CD107
Simplifying life with projects and solutionsCD107
Displaying the project ..CD108
Multisourcing your way to success: Adding a classCD111
Completing the example classes ..CD112
Converting classes into a program ..CD115

Considering What Code Should Look Like ...CD116
Getting Help — Quickly! ..CD120

F1 Help ...CD120
Index Help ...CD122
Search Help ...CD124
More Help goodies ...CD125
“Auto list members” Help ..CD126

“De”-Debugging Windows ...CD127
Your program has bugs: It’s time to call the exterminator!CD128
Learning the single-step dance ...CD130
Let me break my point ...CD134
Operator, trace that call stack! ...CD137
“It’s soup” ..CD138

xviiTable of Contents

02_597043 ftoc.qxd 9/20/05 1:05 PM Page xvii

Bonus Chapter 5: C# on the Cheap .CD139
Working Without a Net — But Not a .NET ...CD140

Grabbing the free ingredients ...CD141
Going around the C# development cycleCD142

Doing C# with SharpDevelop ..CD142
Examining SharpDevelop ..CD143
Comparing SharpDevelop features with Visual StudioCD144
Getting help ...CD145
Configuring SharpDevelop ..CD146
Adding a tool to launch the debuggerCD146
Running the debugger from SharpDevelopCD147
Missing debugger stuff ..CD150

Doing C# with TextPad ..CD150
Creating a C# .CS document class ..CD153
Adding a tool of your own: Build C# DebugCD155
Configuring a tool to do a Release buildCD157
Explaining the configuration options

for the Debug and Release tools ...CD158
Dealing with compiler errors ..CD162
Configuring the rest of the tools ..CD162

Testing It with NUnit ..CD165
Running NUnit ...CD166
Testing? I have to do testing? ...CD166
Writing NUnit tests ...CD168
Debugging bugs in your test code ..CD175

Writing Windows Forms Code without a Form DesignerCD177
It’s just code ..CD177
Doing it the designer’s way ...CD178
Understanding the new partial classesCD179
Doing it your own way ...CD180

Making Sure Your Users Can Run Your C# ProgramsCD180
A Poor Coder’s Visual Studio ..CD180

Index..391

End-User License Agreement.........................Back of Book

C# 2005 For Dummies xviii

02_597043 ftoc.qxd 9/20/05 1:05 PM Page xviii

Introduction

The C# programming language is a powerful, relatively new descendant of
the earlier C, C++, and Java languages. Programming with it is a lot of fun,

as you’re about to find out in this book.

Microsoft created C# as a major part of its .NET initiative. For what are proba-
bly political reasons, Microsoft turned the specifications for the C# language
over to the ECMA (pronounced ek-ma) international standards committee in
the summer of 2000, long before .NET was a reality. In theory, any company
can come up with its own version of C# written to run on any operating
system, on any machine larger than a calculator.

When the first edition of this book came out, Microsoft’s C# compiler was the
only game in town, and its Visual Studio .NET suite of tools offered the only
way to program C# (other than at the Windows command line). Since then,
however, Visual Studio has gone through two major revisions — Visual Studio
2003 and, very recently, Visual Studio 2005. And at least two other players
have entered the C# game.

It’s now possible to write and compile C# programs on a variety of Unix-based
machines using either the Mono or Portable .NET implementations of .NET
and C#:

� Mono (www.go-mono.com) is an open-source software project spon-
sored by Novell Corporation. Version 1.1.8 came out in June 2005. While
Mono lags Microsoft’s .NET, just now implementing the 1.1 version that
Microsoft released a couple of years ago, it appears to be moving fast.

� Portable .NET, under the banner of Southern Storm Software and DotGNU
(www.dotgnu.org/pnet.html), is also open-source. Portable .NET is at
version 0.7.0 as of this writing.

Both Mono and Portable .NET claim to run C# programs on Windows and a
variety of Unix flavors, including Linux and Apple’s Macintosh operating
system. At this writing, Portable .NET reaches the greater number of flavors,
while Mono boasts a more complete .NET implementation. So choosing
between them can be complicated, depending on your project, your platform,
and your goals. (Books about programming for these platforms are becoming
available already. Check www.amazon.com.)

Open-source software is written by collaborating groups of volunteer pro-
grammers and is usually free to the world.

03_597043 intro.qxd 9/20/05 1:07 PM Page 1

Making C# and other .NET languages portable to other operating systems is
far beyond the scope of this book. But you can expect that within a few years,
the C# Windows programs you discover how to write in this book will run on
all sorts of hardware under all sorts of operating systems — matching the
claim of Sun Microsystems’ Java language to run on any machine. That’s
undoubtedly a good thing, even for Microsoft. The road to that point is still
under construction, so it’s no doubt riddled with potholes and obstacles to
true universal portability for C#. But it’s no longer just Microsoft’s road.

For the moment, however, Microsoft’s Visual Studio has the most mature
versions of C# and .NET and the most feature-filled toolset for programming
with them.

If all you need is C#, I’ve included a bonus chapter called “C# on the Cheap”
on the CD that accompanies this book. That chapter tells you how you can
write C# code virtually for free. (You’ll be missing lots of amenities, including
the nice visual design tools that Visual Studio 2005 provides, but you can
write Windows code without them, especially the kind of code in this book.
Bonus Chapter 5 explains how.)

Note: Two authors wrote this book, but it seemed more economical to say “I”
instead of “we,” so that’s what we (I?) do throughout.

What’s New in C# 2.0
While C# version 2.0 does have a number of small changes here and there,
most of C# 2.0 is still virtually the same as the previous version. The big new
additions that this book covers include the following:

� Iterator blocks: An iterator is an object that lets you step through all the
items in a collection of objects. That’s always been possible, but C# 2.0
makes it far simpler to implement. Bonus Chapter 3 on the CD helps you
take advantage of the simplicity and flexibility of iterator blocks.
Chapter 15 covers collections.

� Generics: This is the big one! Generic features allow you to write highly
general, more flexible code. It’s a powerhouse — a programmer’s dream.
Chapter 15 shows you how to write far simpler and more type-safe code
using generics.

Leaving aside a few of the more esoteric and advanced additions, we’ll men-
tion a few smaller items here and there as appropriate. (Don’t worry if parts
of this Introduction are Greek to you. You’ll get there.)

2 C# 2005 For Dummies

03_597043 intro.qxd 9/20/05 1:07 PM Page 2

About This Book
The goal of this book is to explain C# to you, but to write actual programs you
need a specific coding environment. We’re betting that most readers will be
using Microsoft Visual Studio, although we do provide alternatives. In basing
the book on Visual Studio, we’ve tried to keep the Visual Studio portions to a
reasonable minimum. we could just tell you, “Run your program any way you
want,” but instead we may say, “Execute your C# program from Visual Studio
by pressing F5.” We want you to be able to focus on the C# language and not
on the mechanics of getting simple things to work.

We realize that many, if not most, readers will want to use C# to write graphi-
cal Windows applications. C# is a powerful tool for programming graphical
Windows applications, but that’s only one area for using C#, and this book
must focus on C# as a language. We touch briefly on graphical Windows pro-
grams in Chapter 1, but you should get a good grasp of C# before seeking
another source to understand Windows programming in full. We also realize
that some power users will be using C# to build Web-ready, distributed appli-
cations; however, publishing limitations require us to draw the line some-
where. C# 2005 For Dummies does not tackle the challenges of distributed
programming. The book does explain quite a bit of .NET, though, for the
simple reason that much of C#’s power comes from the .NET Framework
class libraries that it uses.

What You Need to Use the Book
At a minimum, you need the Common Language Runtime (CLR) before you
can even execute the programs generated by C#. Visual Studio 2005 copies
the CLR onto your machine for you as part of the installation procedure.
Alternatively, you can download the entire .NET package, including the C#
compiler and many other nice tools, from Microsoft’s Web site at http://
msdn.microsoft.com. Look for the .NET Software Development Toolkit
(SDK). Bonus Chapter 5 on the CD explains how to get these items.

You can still create most of the programs in this book with Visual Studio
2003, if you need to. The exceptions are those that cover the new features
available only with C# 2.0, primarily generics and iterator blocks. A less-
costly C# Express 2005 version of Visual Studio 2005 is also available,
and don’t overlook the cheap options covered in Bonus Chapter 5 on
the CD.

3Introduction

03_597043 intro.qxd 9/20/05 1:07 PM Page 3

How to Use This Book
We’ve made this book as easy to use as possible. Figuring out a new language
is hard enough. Why make it any more complicated than it needs to be? The
book is divided into six parts. Part I introduces you to C# programming with
Visual Studio. This part guides you step by step in the creation of two differ-
ent types of programs. We strongly encourage you to start here and read
these two chapters in order before branching out into the other parts of
the book. Even if you’ve programmed before, the basic program framework
created in Part I is reused throughout the book.

The chapters in Parts II through V stand alone. We have written these chapters
so that you can open the book to any one of them and start reading. If you’re
new to programming, however, you will have to read Part II before you can
jump ahead. But when you return to refresh your memory on some particular
topic, you should have no trouble flipping to a section without the need to
restart 20 pages back.

Of course, the Part of Tens finishes out the lineup, and there’s more on the
CD that accompanies the book.

How This Book Is Organized
Here’s a brief rundown on what you’ll find in each part of the book.

Part I: Creating Your First C# Programs
This part shows you, step by step, how to write the smallest graphical
Windows application possible using the Visual Studio 2005 interface. Part I
also shows you how to create the basic nongraphical C# framework that’s
used in the other parts of this book.

Part II: Basic C# Programming
At the most basic level, Shakespeare’s plays are just a series of words all
strung together. By the same token, 90 percent of any C# program you ever
write consists of creating variables, performing arithmetic operations, and
controlling the execution path through a program. This part concentrates on
these core operations.

4 C# 2005 For Dummies

03_597043 intro.qxd 9/20/05 1:07 PM Page 4

Part III: Object-Based Programming
It’s one thing to declare variables here or there and to add them and subtract
them. It’s quite another thing to write real programs for real people. Part III
focuses on how to organize your data to make it easier to use in creating a
program.

Part IV: Object-Oriented Programming
You can organize the parts of an airplane all you want, but until you make it
do something, it’s nothing more than a collection of parts. It’s not until you
fire up the engines and start the wings flapping that it’s going anywhere.

In like fashion, Part IV explains how to turn a collection of data into a real
object — an object that has internal members, sure, but an object that can
mimic the properties of a real-world item. This part presents the essence of
object-oriented programming.

Part V: Beyond Basic Classes
After the airplane gets off the ground, it has to go somewhere. Figuring out
classes and the fundamentals of object-oriented programming is only a start.
Part V takes the next step, introducing structures, interfaces, and generics,
your gateway to more advanced object-oriented concepts — and the wild
blue yonder.

Part VI: The Part of Tens
C# is great at finding errors in your programs — at times, it seems a little too
good at pointing out my shortcomings. However, believe it or not, C# is trying
to do you a favor. Every problem it finds is another problem that you would
otherwise have to find on your own.

Unfortunately, the error messages can be confusing. One chapter in this part
presents the ten most common C# build error messages, what they mean,
and how the heck to get rid of them.

Many readers are coming to C# from another programming language. The
second chapter in The Part of Tens describes the ten major differences
between C# and its progenitor, C++.

5Introduction

03_597043 intro.qxd 9/20/05 1:07 PM Page 5

About the CD-ROM
The enclosed CD-ROM contains a host of goodies. First, you find all the
source code from this book. A set of utilities is also included. We don’t rec-
ommend the SharpDevelop utility for full-scale development of commercial
programs, but it’s useful for writing small applications or making a quick
change without waiting for Visual Studio to boot up. It’s perfectly adequate
for everything in this book. The TextPad editor is Notepad on steroids. It
makes a fine cheap platform for programming C#. The NUnit testing tool,
wildly popular among C# programmers, makes testing your code easy,
whether from Visual Studio, SharpDevelop, or TextPad. Finally, the CD con-
tains a bunch of bonus chapters covering features and techniques that
wouldn’t fit into the book. Don’t ignore the CD.

Don’t forget the ReadMe file, which has all the most up-to-date information.

Icons Used in This Book
Throughout the pages of this book, we use the following icons to highlight
important information.

This icon flags technical stuff that you can skip on the first reading.

The Tip icon highlights a point that can save you a lot of time and effort.

Remember this. It’s important.

Remember this, too. This one can sneak up on you when you least expect it
and generate one of those really hard-to-find bugs.

This icon identifies code that you can find on the CD-ROM that comes with
this book. This feature is designed to save you some typing when your fin-
gers start to cramp, but don’t abuse it. You’ll gain a better understanding of
C# by entering the programs yourself.

6 C# 2005 For Dummies

03_597043 intro.qxd 9/20/05 1:07 PM Page 6

Conventions Used in This Book
Throughout this book, we use several conventions to help you out. Terms
that are not “real words,” such as the name of some program variable, appear
in this font to minimize the confusion factor. Program listings are offset from
text as follows:

use System;
namespace MyNameSpace
{
public class MyClass
{
}

}

Each listing is followed by a clever, insightful explanation. Complete programs
are included on the CD-ROM for your viewing pleasure. Small code segments
are not.

Finally, you’ll see command arrows, as in the phrase, “Choose File➪Open
With➪Notepad.” That means choose the File menu option. Then, from the
pull-down menu that appears, choose Open With. Finally, from the resulting
submenu, choose Notepad.

Where to Go from Here
Obviously, the first step is to figure out the C# language, ideally using C# 2005
For Dummies, of course. You may want to give yourself a few months of writ-
ing simple C# programs before taking on the next step of discovering how to
create Windows applications. Give yourself many months of Windows appli-
cation experience before you branch out into writing programs intended to
be distributed over the Internet.

In the meantime, you can keep up with C# goings and comings in several loca-
tions. First, check out the official source: http://msdn.microsoft.com/msdn.
In addition, various programmer Web sites have extensive material on C#,
including lively discussions all the way from how to save a source file to the rel-
ative merits of deterministic versus nondeterministic garbage collection.
Around my house, garbage collection is very deterministic: It’s every
Wednesday morning. Here are a few large C# sites:

� www.gotdotnet.com, the .NET team’s official site

� http://msdn.microsoft.com, which gets you to related team sites,
including C# and the .NET Framework

7Introduction

03_597043 intro.qxd 9/20/05 1:07 PM Page 7

� http://blogs.msdn.com/csharpfaq, a C# Frequently Asked Questions
blog

� http://msdn.microsoft.com/vcsharp/team/blogs, which is com-
prised of personal blogs of C# team members

� www.cs2themax.com

One of the authors maintains a Web site, www.chucksphar.com, containing
a set of Frequently Asked Questions (FAQs). If you encounter something that
you can’t figure out, try going there — maybe the FAQs have already answered
your question. In addition, the site includes a list of any mistakes that may
have crept into the book. Finally, and we do mean finally, you can find a link
to the authors’ e-mail addresses, in case you can’t find the answer to your
question on the site.

8 C# 2005 For Dummies

03_597043 intro.qxd 9/20/05 1:07 PM Page 8

Part I
Creating Your First

C# Programs

04_597043 pt01.qxd 9/20/05 1:08 PM Page 9

In this part . . .
You have a long way to go before you’ve mastered C#,

so have a little fun just to get your feet wet. Part I
gives you a taste of Windows graphics programming by
taking you through the steps for creating the most basic
Windows application possible using the Visual Studio 2005
interface. Part I also shows you how to create the basic C#
framework for the example programs that appear through-
out this book.

04_597043 pt01.qxd 9/20/05 1:08 PM Page 10

Chapter 1

Creating Your First C#
Windows Program

In This Chapter
� What’s a program? What is C#? Where am I?

� Creating a Windows program

� Making sure your Visual Studio 2005 C# is in tune

In this chapter, I explain a little bit about computers, computer languages,
C#, and Visual Studio 2005. Then, I take you through the steps for creating

a very simple Windows program written in C#.

Getting a Handle on Computer
Languages, C#, and .NET

A computer is an amazingly fast, but incredibly stupid servant. Computers
will do anything you ask them to (within reason), and they do it extremely
fast — and they’re getting faster all the time. As of this writing, the common
PC processing chip can handle well over a billion instructions per second.
That’s billion, with a “b.”

Unfortunately, computers don’t understand anything that resembles a human
language. Oh, you may come back at me and say something like, “Hey, my
telephone lets me dial my friend by just speaking his name. I know that a tiny
computer runs my telephone. So that computer speaks English.” But it’s a
computer program that understands English, not the computer itself.

The language that computers understand is often called machine language.
It is possible, but extremely difficult and error prone, for humans to write
machine language.

05_597043 ch01.qxd 9/20/05 1:10 PM Page 11

For historical reasons, machine language is also known as assembly language.
In the old days, each manufacturer provided a program called an assembler
that would convert special words into individual machine instructions. Thus,
you might write something really cryptic like MOV AX,CX. (That’s an actual
Intel processor instruction, by the way.) The assembler would convert that
instruction into a pattern of bits corresponding to a single machine instruction.

Humans and computers have decided to meet somewhere in the middle.
Programmers create their programs in a language that is not nearly as free as
human speech but a lot more flexible and easy to use than machine language.
The languages that occupy this middle ground — C#, for example — are called
high-level computer languages. (High is a relative term here.)

What’s a program?
What is a program? In one sense, a Windows program is an executable file that
you can run by double-clicking its icon. For example, the version of Microsoft
Word that I’m using to write this book is a program. You call that an executable
program, or executable for short. The names of executable program files gener-
ally end with the extension .exe.

But a program is something else, as well. An executable program consists
of one or more source files. A C# program file is a text file that contains a
sequence of C# commands, which fit together according to the laws of C#
grammar. This file is known as a source file, probably because it’s a source of
frustration and anxiety.

What’s C#?
The C# programming language is one of those intermediate languages that
programmers use to create executable programs. C# fills the gap between the
powerful-but-complicated C++ and the easy-to-use-but-limited Visual Basic —
well, versions 6.0 and earlier, anyway. (Visual Basic’s newer .NET incarnation
is almost on par with C# in most respects. As the flagship language of .NET,
C# tends to introduce most new features first.) A C# program file carries the
extension .CS.

Some wags have pointed out that C-sharp and D-flat are the same note, but
you should not refer to this new language as D-flat within earshot of
Redmond, Washington.

12 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 12

C# is

� Flexible: C# programs can execute on the current machine, or they can
be transmitted over the Web and executed on some distant computer.

� Powerful: C# has essentially the same command set as C++, but with the
rough edges filed smooth.

� Easier to use: C# modifies the commands responsible for most C++
errors so you spend far less time chasing down those errors.

� Visually oriented: The .NET code library that C# uses for many of its
capabilities provides the help needed to readily create complicated dis-
play frames with drop-down lists, tabbed windows, grouped buttons,
scroll bars, and background images, to name just a few.

� Internet friendly: C# plays a pivotal role in the .NET Framework,
Microsoft’s current approach to programming for Windows, the Internet,
and beyond. .NET is pronounced dot net.

� Secure: Any language intended for use on the Internet must include
serious security to protect against malevolent hackers.

Finally, C# is an integral part of .NET.

What’s .NET?
.NET began a few years ago as Microsoft’s strategy to open up the Web to
mere mortals like you and me. Today it’s bigger than that, encompassing
everything Microsoft does. In particular, it’s the new way to program for
Windows. It also gives a C-based language, C#, the simple, visual tools that
made Visual Basic so popular. A little background will help you see the roots
of C# and .NET.

Internet programming was traditionally very difficult in older languages like C
and C++. Sun Microsystems responded to that problem by creating the Java
programming language. To create Java, Sun took the grammar of C++, made it
a lot more user friendly, and centered it around distributed development.

When programmers say “distributed,” they’re describing geographically dis-
persed computers running programs that talk to each other — in many cases,
via the Internet.

When Microsoft licensed Java some years ago, it ran into legal difficulties with
Sun over changes it wanted to make to the language. As a result, Microsoft
more or less gave up on Java and started looking for ways to compete with it.

13Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 13

Being forced out of Java was just as well because Java has a serious problem:
Although Java is a capable language, you pretty much have to write your
entire program in Java to get its full benefit. Microsoft had too many develop-
ers and too many millions of lines of existing source code, so Microsoft had
to come up with some way to support multiple languages. Enter .NET.

.NET is a framework, in many ways similar to Java’s libraries, because the C#
language is highly similar to the Java language. Just as Java is both the lan-
guage itself and its extensive code library, C# is really much more than just
the keywords and syntax of the C# language. It’s those things empowered by
a thoroughly object-oriented library containing thousands of code elements
that simplify doing about any kind of programming you can imagine, from
Web-based databases to cryptography to the humble Windows dialog box.

The previous generation platform was made up of a hodgepodge of tools
with cryptic names. .NET updates all that with Visual Studio 2005, with more
focused .NET versions of its Web and database technologies, newer versions
of Windows, and .NET-enabled servers. .NET supports emerging communica-
tion standards such as XML and SOAP rather than Microsoft’s proprietary
formats. Finally, .NET supports the hottest buzzwords since object-oriented:
Web Services.

Microsoft would claim that .NET is much superior to Sun’s suite of Web tools
based on Java, but that’s not the point. Unlike Java, .NET does not require
you to rewrite existing programs. A Visual Basic programmer can add just a
few lines to make an existing program “Web knowledgeable” (meaning that
it knows how to get data off the Internet). .NET supports all the common
Microsoft languages and more than 40 other languages written by third-party
vendors (see www.gotdotnet.com/team/lang for the latest list). However,
C# is the flagship language of the .NET fleet. C# is always the first language to
access every new feature of .NET.

What is Visual Studio 2005?
What about Visual C#?
You sure ask lots of questions. The first “Visual” language from Microsoft was
Visual Basic, code-named “Thunder.” The first popular C-based programming
language from Microsoft was Visual C++. Like Visual Basic, it was called
“Visual” because it had a built-in graphical user interface (GUI — pronounced
gooey). This GUI included everything you needed to develop nifty-giffy C++
programs.

Eventually, Microsoft rolled all its languages into a single environment —
Visual Studio. As Visual Studio 6.0 started getting a little long in the tooth,
developers anxiously awaited Version 7. Shortly before its release, however,
Microsoft decided to rename it Visual Studio .NET to highlight this new envi-
ronment’s relationship to .NET.

14 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 14

That sounded like a marketing ploy to me until I started delving into it. Visual
Studio .NET differed quite a bit from its predecessors — enough so to warrant
a new name. Visual Studio 2005 is the successor to the original Visual Studio
.NET. (See Bonus Chapter 4 on the CD for a tour of some of Visual Studio’s more
potent features.)

Microsoft calls its implementation of the language Visual C#. In reality, Visual
C# is nothing more than the C# component of Visual Studio. C# is C#, with or
without the Visual Studio.

Okay, that’s it. No more questions.

Creating a Windows Application with C#
To help you get your feet wet with C# and Visual Studio, this section takes you
through the steps for creating a simple Windows program. Windows programs
are commonly called Windows applications, WinApps or WinForms apps for
short.

Because this book focuses on the C# language, it’s not a Web-programming
book, a database book, or a Windows programming book per se. In particular,
this chapter constitutes the only coverage of Windows Forms visual program-
ming. All I have room to do is give you this small taste.

In addition to introducing Windows Forms, this program serves as a test of
your Visual Studio environment. This is a test; this is only a test. Had it been
an actual Windows program . . . Wait, it is an actual Windows program. If you
can successfully create, build, and execute this program, your Visual Studio
environment is set up properly, and you’re ready to rock.

Creating the template
Writing Windows applications from scratch is a notoriously difficult process.
With numerous session handles, descriptors, and contexts, creating even a
simple Windows program poses innumerable challenges.

Visual Studio 2005 in general and C# in particular greatly simplify the task of
creating your basic WinApp. To be honest, I’m a little disappointed that you
don’t get to go through the thrill of doing it by hand. In fact, why not switch
over to Visual C++ and . . . okay, bad idea.

Because Visual C# is built specifically to execute under Windows, it can shield
you from many of the complexities of writing Windows programs from scratch.
In addition, Visual Studio 2005 includes an Applications Wizard that builds
template programs.

15Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 15

Typically, template programs don’t actually do anything — at least, not any-
thing useful (sounds like most of my programs). However, they do get you
beyond that initial hurdle of getting started. Some template programs are rea-
sonably sophisticated. In fact, you’ll be amazed at how much capability the
App Wizard can build on its own.

After you’ve completed the Visual Studio 2005 installation, follow these steps
to create the template:

1. To start Visual Studio, choose Start➪All Programs➪Microsoft Visual
Studio 2005➪Microsoft Visual Studio 2005, as shown in Figure 1-1.

After some gnashing of CPU teeth and thrashing of disk, the Visual
Studio desktop appears. Now things are getting interesting.

2. Choose File➪New➪Project, as shown in Figure 1-2.

Visual Studio responds by opening the New Project dialog box, as shown
in Figure 1-3.

A project is a collection of files that Visual Studio builds together to
make a single program. You’ll be creating C# source files, which carry
the extension .CS. Project files use the extension .CSPROJ.

Figure 1-1:
What a

tangled web
we weave

when a
C# program

we do
conceive.

16 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 16

3. Under Project Types, select Visual C#, and under that, click Windows.
Under Templates, click Windows Application.

If you don’t see the correct template icon right away, don’t panic — you
may need to scroll around in the Templates pane a bit.

Don’t click OK, yet.

Figure 1-3:
The Visual

Studio
Application

Wizard is
just waiting

to create
a new

Windows
program
for you.

Figure 1-2:
Creating a

new project
starts you
down the

road to
a better

Windows
application.

17Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 17

4. In the Name text box, enter a name for your project, or use the default
name.

The Application Wizard will create a folder in which it stores various files,
including the project’s initial C# source file. The Application Wizard uses
the name you enter in the Name text box as the name of that folder. The
initial default name is WindowsApplication1. If you’ve been here before,
the default name may be WindowsApplication2, WindowsApplication3,
and so on.

For this example, you can use the default name and the default location
for this new folder: My Documents\Visual Studio Projects\
WindowsApplication1. I put my real code there too, but for this
book, I’ve changed the default location to a shorter file path. To
change the default location, choose Tools➪Options➪Projects and
Solutions➪General. Select the new location — C:\C#Programs for this
book — in the Visual Studio Projects Location box, and click OK. (You
can create the new directory in the Project Location dialog box at the
same time. Click the folder icon with a small sunburst at the top of
the dialog box. The directory may already exist if you’ve installed the
example programs from the CD.)

5. Click OK.

The Application Wizard makes the disk light blink for a few seconds
before opening a blank Form1 in the middle of the display.

Building and running your first
Windows Forms program
After the Application Wizard loads the template program, Visual Studio opens
the program in Design mode. You should convert this empty C# source pro-
gram into a Windows Application, just to make sure that the template the
Application Wizard generated doesn’t have any errors.

The act of converting a C# source file into a living, breathing Windows
Application is called building (or compiling). If your source file has any errors,
Visual C# will find them during the build process.

To build and run your first Windows Forms program, follow these steps:

1. Choose Build➪Build projectname (where projectname is a name like
WindowsApplication1 or MyProject).

The Output window may open. If not, you can open it before you build
if you like. Choose View➪Other Windows➪Output. Then Build. In the
Output window, a set of messages scrolls by. The last message in the
Output window should be Build: 1 succeeded, 0 failed,0 skipped

18 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 18

(or something very close to that). This is the computer equivalent of “No
runs, no hits, no errors.” If you don’t bother with the Output window, you
should see Build succeeded or Build failed in the status bar just
above the Start menu.

Figure 1-4 shows what Visual Studio looks like after building the default
Windows program, complete with Output window. Don’t sweat the posi-
tions of the windows. You can move them around as needed. The impor-
tant parts are the Forms Designer window and the Output window. The
designer window’s tab is labeled “Form1.cs [Design].”

2. You can now execute this program by choosing Debug➪Start Without
Debugging.

The program starts and opens a window that looks just like the one in
the Forms Designer window, as shown in Figure 1-5.

In C# terms, this window is called a form. A form has a border and a title
bar across the top with the little Minimize, Maximize, and Close buttons.

Forms
Designer

Forms Designer
toolbar

Solution ExplorerOutput window

Figure 1-4:
The initial
Windows
template
program
isn’t very
exciting.

19Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 19

3. Click the little Close button in the upper-right corner of the frame to
terminate the program.

See! C# programming isn’t so hard.

As much as anything, this initial program is a test of your installation. If
you’ve gotten this far, your Visual Studio is in good shape and ready for the
programs throughout the rest of this book.

Go ahead and update your resume to note that you are officially a Windows
applications programmer. Well, maybe an application (as in one) programmer,
so far.

Painting pretty pictures
The default Windows program isn’t very exciting, but you can jazz it up a
little bit. Return to Visual Studio and select the window with the tab
Form1.cs [Design] (refer to Figure 1-4). This is the Forms Designer window.

The Forms Designer is a powerful feature that enables you to “paint” your
program into the form. When you’re done, click Build, and the Forms Designer
creates the C# code necessary to make a C# application with a pretty frame
just like the one you painted.

In this section, I introduce several new Forms Designer features that simplify
your Windows Forms programming. You find out how to build an application
with two text boxes and a button. The user can type into one of the text boxes
(the one labeled Source) but not in the other (which is labeled Target). When
the user clicks a button labeled Copy, the program copies the text from the
Source text box into the Target text box. That’s it.

Figure 1-5:
The

template
Windows

application
works, but

it won’t
convince

your spouse
that Visual

Studio 2005
is worth the

price.

20 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 20

Putting some controls in place
The labeled windows that make up the Visual Studio user interface are called
document windows and control windows. Document windows are for creating
and editing documents, such as the C# source files that make up a C# pro-
gram. Control windows like the Solution Explorer shown in Figure 1-4 are for
managing things in Visual Studio while you program. For much more about
Visual Studio’s windows, menus, and other features, read the first half of
Bonus Chapter 4 on the CD that accompanies this book.

All those little doodads like buttons and text boxes are known as controls.
(You also may hear the term widget.) As a Windows programmer, you use
these tools to build the graphical user interface (GUI), usually the most diffi-
cult part of a Windows program. In the Forms Designer, these tools live in a
control window known as the Toolbox.

If your Toolbox isn’t open, choose View➪Toolbox. Figure 1-6 shows Visual
Studio with the Toolbox open on the right side of the screen.

Don’t worry if your windows are not in the same places as in Figure 1-6. For
example, your Toolbox may be on the left side of the screen, on the right, or
in the middle. You can move any of the views anywhere on the desktop, if you
want. Bonus Chapter 4 on the CD explains how.

The Toolbox has various sections, including Data, Components, and Windows
Forms. These sections, commonly known as tabs, simply organize the con-
trols so you’re not overwhelmed by them all. The Toolbox comes loaded with
many controls, and you can make up your own.

Figure 1-6:
The Visual

Studio
Toolbox is

chock-full of
interesting

controls.

21Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 21

Click the plus sign next to Common Controls (or the one labeled All Windows
Forms) to reveal the options below it, as shown in Figure 1-6. You use these
controls to jazz up a form. The scroll bar on the right enables you to scroll up
and down within the controls listed in the Toolbox.

You add a control to a form by dragging the control and dropping it where
you want. Follow these steps to use the Toolbox to create two text boxes and
a button:

1. Grab the Textbox control, drag it over to the form labeled Form1, and
release the mouse button.

You might have to scroll the Toolbox. After you drag the control, a text
box appears in the form. If the text box contains text (it may not), it says
textBox1. This is the name the Forms Designer assigned to that particu-
lar control. (In addition to its Name property, a control has a Text prop-
erty that needn’t match the Name.) You can resize the text box by
clicking and dragging its corners.

You can only make the text box wider. You can’t make it taller because
by default these are single-line text boxes. The little right-pointing arrow
on the text box — called a smart tag — lets you change that, but ignore it
until you read Bonus Chapter 4 on the CD.

2. Grab the Textbox control again and drop it underneath the first
text box.

Notice that thin blue alignment guides — called snaplines — appear to
help you align the second text box with other controls. That’s a cool new
feature.

3. Now grab the Button control and drop it below the two text boxes.

A button now appears below the two text boxes.

4. Resize the form and use the alignment guides as you move everything
around until the form looks pretty.

Figure 1-7 shows the form. Yours may look a little different.

Figure 1-7:
The initial

layout of the
form looks

like this.

22 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 22

Controlling the properties
The most glaring problem with the application now is that button label.
button1 is not very descriptive. You need to fix that first.

Each control has a set of properties that determine the control’s appearance
and the way it works. You access these properties through the Properties
window. Follow these steps to change the properties of different controls:

1. Select the button by clicking it.

2. Enable the Properties window by choosing View➪Properties Window.

The button control has several sets of properties: the appearance set
listed at the top, the behavior properties down below, and several
others. You need to change the Text property, which is under
Appearance. (To see the properties listed alphabetically rather than in
categories, click the icon at the top of the window with AZ on it.)

3. In the Properties view, select the box in the right-hand column next to
the Text property. Type in Copy and then press Enter.

Figure 1-8 shows these settings in the Properties view and the resulting
form. The button is now labeled Copy.

4. Change the initial contents of the Textbox controls. Select the upper
text box and repeat Step 3, typing the text User types in here. Do
the same for the lower text box, typing the text Program copies text
into here.

Doing this lets the user know what to do when the program starts.
Nothing baffles users more than a confusing dialog box.

Figure 1-8:
The

Properties
view gives

you control
over your
controls.

23Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 23

5. Similarly, changing the Text property of the Form changes the text in
the title bar. Click somewhere in the Form, type in the new name in
the Text property, and then press Enter.

I set the title bar to “Text Copy Application.”

6. While you’re changing Form properties, click the AcceptButton prop-
erty (under Misc in the Properties window). Click the space to the
right of AcceptButton to specify which button responds when the user
presses the Enter key. In this case, select button1.

“Copy” is the text on this button, but the name is still button1. You
could change that too, if you like. It’s the Form’s Name property — a
form property, not a button property.

7. Select the lower text box and scroll through the Behavior properties
until you get to one called ReadOnly. Set that to True by clicking it
and selecting from the drop-down list, as shown in Figure 1-9.

8. Click the Save button in the Visual Studio toolbar to save your work.

While you work, click the Save button every once in awhile just to make
sure you don’t lose too much if your dog trips over the computer’s
power cord. Unsaved files show an asterisk in the tab at the top of the
Forms Designer window.

Building the application
Choose Build➪Build WindowsApplication1 to rebuild the application. This step
builds a new Windows Application with the Form you’ve just created. In the
Output window you should see a 1 succeeded, 0 failed, 0 skipped
message.

Figure 1-9:
Setting the
text box to
read only

keeps users
from editing

the field
when the

program is
executing.

24 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 24

Now execute the program by choosing Debug➪Start Without Debugging. The
resulting program opens a form that looks like the one you’ve been editing, as
shown in Figure 1-10. You can type into the upper text box, but you can’t type
into the lower text box (unless you forgot to change the ReadOnly property).

Make it do something, Daddy
The program looks right but it doesn’t do anything. If you click the Copy
button, nothing happens. So far, you’ve only set the Appearance properties —
the properties that manage the appearance of the controls. Now, follow these
steps to put the smarts into the Copy button to actually copy the text from the
source text box to the target:

1. In the Forms Designer, select the Copy button again.

2. In the Properties window, click the little lightning bolt icon above the
list of properties to open a new set of properties.

These are called the control’s events. They manage what a control does
while the program executes.

You need to set the Click event. This determines what the button does
when the user clicks it. That makes sense.

3. Double-click the Click event and watch all heck break loose.

The Design view is one of two different ways of looking at your applica-
tion. The other is the Code view, which shows the C# source code that
the Forms Designer has been building for you behind the scenes. Visual
Studio knows that you need to enter some C# code to make the program
transfer the text.

Instead of the lightning bolt, you can simply double-click the button
itself on the Forms Designer.

Figure 1-10:
The

program
window

looks like
the Form
you just

built.

25Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 25

When you set the Click event, Visual Studio switches the display to the
Code view and creates a new method. Visual Studio gives this method
the descriptive name button1_Click(). When the user clicks the Copy
button, this method will perform the actual transfer of text from
textBox1, the source, to textBox2, the target.

Don’t worry too much about what a method is. I describe methods in
Chapter 8. Just go with the flow for now.

This method simply copies the Text property from textBox1 to
textBox2, right at the blinking insertion point.

4. Because button1 is now labeled “Copy,” rename the method with
the Refactor menu. Double-click the name button1_Click in the
Code window. Choose Refactor➪Rename. In the New Name box,
type CopyClick. Press Enter twice (but take a look at the dialog
boxes).

It’s good for a control’s text to reflect its purpose clearly.

New in Visual Studio 2005, the Refactor menu is the safest way to make
certain changes to the code. For instance, just manually changing the
name button1_Click for the method would miss another reference to
the method elsewhere in the code that the Forms Designer has gener-
ated on your behalf.

The second dialog box for the Rename refactoring shows things that will
change: the method and any references to it in comments, text strings,
or other places in the code. You can deselect items in the upper pane to
prevent them from changing. The lower Preview Code Changes pane lets
you see what will actually change. Use the Refactor menu to save your-
self lots of error-prone work.

5. Add the following line of code to the CopyClick() method:

textBox2.Text = textBox1.Text;

Notice how C# tries to help you out as you type. Figure 1-11 shows the dis-
play as you type the last part of the preceding line. The drop-down list of
the properties for a text box helps to jog your memory about which prop-
erties are available and how they’re used. This auto-complete feature is a
great help during programming. (If auto-complete doesn’t pop up, press
Ctrl-Space to display it.)

6. Choose Build➪Build WindowsApplication1 to add the new click
method into the program.

26 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 26

Trying out the final product
Choose Debug➪Start Without Debugging to execute the program one last time.
Type some text in the source text box and then click the Copy button. The
text is magically copied over to the target text box, as shown in Figure 1-12.
Gleefully repeat the process, typing whatever you want and copying away until
you get tired of it.

Figure 1-12:
It works!

Figure 1-11:
The auto-
complete

feature
displays the

property
names as
you type.

27Chapter 1: Creating Your First C# Windows Program

05_597043 ch01.qxd 9/20/05 1:10 PM Page 27

Looking back on the creation process, you may be struck by how picture-
oriented it all is. Grab controls, drop them around on the frame, set proper-
ties, and that’s about it. You only had to write one line of C# code.

You could argue that the program doesn’t do much, but I would disagree.
Look back at some of the earlier Windows programming books in the days
before App Wizards, and you’ll see how many hours of coding even a simple
application like this would have taken.

Visual Basic 6.0 programmers, beware!
To those Visual Basic 6.0 programmers among you, this probably seems mun-
dane. In fact, the Forms Designer works a lot like the one in later versions of
Visual Basic. However, the .NET Forms Designer, which Visual C# uses, is
much more powerful than its Visual Basic 6.0 counterpart. .NET and C# (and
Visual Basic .NET, for that matter) use the .NET library of routines, which is
more powerful, extensive, and consistent than the old Visual Basic library.
And .NET supports developing distributed programs for the network as well
as programs using multiple languages, which Visual Basic did not. But the
chief improvement in the Forms Designer used by C# and Visual Basic .NET
over the Visual Basic 6.0 predecessor is that all the code it generates for you
is just code, which you can easily modify. In Visual Basic 6.0, you were stuck
with what the designer gave you.

28 Part I: Creating Your First C# Programs

05_597043 ch01.qxd 9/20/05 1:10 PM Page 28

Chapter 2

Creating Your First C#
Console Application

In This Chapter
� Creating a simple console application template

� Reviewing the console application template

� Exploring the parts of the template

Even the most basic Windows programs can be daunting to the beginning
C# programmer. Just check out Chapter 1 if you don’t believe me. A so-

called console application program — or console app (all of us in-the-know
types drop off unnecessary syllables when poss) — generates significantly
less C# code and is much easier to understand.

In this chapter, you use Visual Studio to create a template console app. Then,
you manually simplify that template just a little more. You can use the result
as a template for many of the programs I describe in this book.

The primary purpose of this book is to help you understand C#. You can’t
create the next Starship graphics game in C# until you know the C# language.

Creating a Console Application Template
The following instructions are for Visual Studio. If you use anything other
than Visual Studio, you have to refer to the documentation that came with
your environment. Alternatively, you can just type the source code directly
into your C# environment. See Bonus Chapter 5 for some alternatives to
Visual Studio.

06_597043 ch02.qxd 9/20/05 1:12 PM Page 29

Creating the source program
Complete these steps to create your C# console app template:

1. Choose File➪New➪Project to create a new project.

Visual Studio presents you with a window of icons representing the dif-
ferent types of applications that you can create.

2. From this New Project window, click the Console Application icon.

Make sure that you select Visual C# and under it, Windows, in the
Project Types pane; otherwise, Visual Studio may create something
awful like a Visual Basic or Visual C++ application. Then click the
Console Application icon in the Templates pane.

Visual Studio requires you to create a project before you can start to
enter your C# program. A project is like a bucket in which you throw all
the files that go into making your program. When you tell your compiler
to build the program, it sorts through the project to find the files it
needs to re-create the program.

The default name for your first application is ConsoleApplication1,
but change it this time to ConsoleAppTemplate. In future chapters, you
can open the template, save it as a new name, and already have the
essentials in place.

The default place to store this file is somewhere deep in My Documents.
Maybe because I’m difficult (or maybe because I’m writing a book), I like
to put my programs where I want them, not necessarily where Visual
Studio wants them. In Chapter 1, I show you how to change the default
project location to C:\C#Programs (if you want to simplify working with
this book).

3. Click the OK button.

After a bit of disk whirring and chattering, Visual Studio generates a file
called Program.cs. (If you look in the window labeled Solution Explorer,
you see some other files; ignore them for now. If Solution Explorer isn’t
visible, choose View➪Solution Explorer.) C# source files carry the exten-
sion .CS. The name Program is the default name assigned for the pro-
gram file.

The contents of your first console app appear as follows:

using ...

namespace ConsoleAppTemplate
{
class Program
{
static void Main(string[] args)

30 Part I: Creating Your First C# Programs

06_597043 ch02.qxd 9/20/05 1:12 PM Page 30

{

}
}

}

Along the left edge of the code window, you see several small plus (+) and
minus (–) signs in boxes. Click the + sign next to using.... This expands a
code region, a handy Visual Studio feature that keeps down the clutter. Here
are the directives when you expand the region in the default console app:

using System;
using System.Collections.Generic;
using System.Text;

Regions help you focus on the code you’re working on by hiding code that
you aren’t. Certain blocks of code — such as the namespace block, class
block, methods, and other code items — get a +/– automatically without a
#region directive. You can add your own collapsible regions, if you like, by
typing #region above a code section and #endregion after it. It helps to
supply a name for the region, such as Public methods. Note that this name
can include spaces. Also, you can nest one region inside another (an advan-
tage over Visual Basic), but regions can’t overlap.

For now, using System; is the only using directive you really need. You can
delete the others; the compiler lets you know whether you’re missing one.

Taking it out for a test drive
To convert your C# program into an executable program, choose Build➪Build
ConsoleAppTemplate. Visual Studio responds with the following message:

- Build started: Project: ConsoleAppTemplate, Configuration: Debug Any CPU -

Csc.exe /noconfig /nowarn ... (and much more)

Compile complete -- 0 errors, 0 warnings
ConsoleAppTemplate -> C:\C#Programs\ ... (and more)==Build: 1 succeeded or up-

to-date, 0 failed, 0 skipped==

The key point here is the 1 succeeded part on the last line.

As a general rule of programming, “succeeded” is good; “failed” is bad.

To execute the program, choose Debug➪Start Without Debugging. The pro-
gram brings up a black console window and terminates immediately. The
program has seemingly done nothing. In fact, this is the case. The template
is nothing but an empty shell.

31Chapter 2: Creating Your First C# Console Application

06_597043 ch02.qxd 9/20/05 1:12 PM Page 31

Creating Your First Real Console App
Edit the Program.cs template file until it appears as follows:

using System;

namespace ConsoleAppTemplate
{ // these are curly braces
// class Program is the “object” containing our code
public class Program
{
// This is where our program starts
// Every program has a Main() method somewhere
static void Main(string[] args)
{
// here’s our code to make it do something
// prompt user to enter a name
Console.WriteLine(“Enter your name, please:”);

// now read the name entered
string sName = Console.ReadLine();

// greet the user with the name that was entered
Console.WriteLine(“Hello, “ + sName);

// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();
// our code in Main() ends here

} // Main() ends here
} // class Program ends here

} // namespace ConsoleAppTemplate ends here

Don’t sweat the stuff following the double or triple slashes (// or ///), and
don’t worry about whether to enter one or two spaces or one or two new
lines. However, do pay attention to capitalization.

Choose Build➪Build ConsoleAppTemplate to convert this new version of
Program.cs into the ConsoleAppTemplate.exe program.

From within Visual Studio 2005, choose Debug➪Start Without Debugging.
The black console window appears and prompts you for your name. (You
may need to activate the console window by clicking it.) Then the window
shows Hello, followed by the name entered, and displays Press Enter to
terminate.... Pressing Enter closes the window.

You can also execute the program from the DOS command line. To do so,
open a DOS window and enter the following:

CD \C#Programs\ConsoleAppTemplate\bin\Debug

32 Part I: Creating Your First C# Programs

06_597043 ch02.qxd 9/20/05 1:12 PM Page 32

Now enter ConsoleAppTemplate to execute the program. The output should be
identical. You can also navigate to the \C#Programs\ConsoleAppTemplate\
bin\Debug folder in Windows Explorer and then double-click the
ConsoleAppTemplate.exe file.

To open a DOS window, try choosing Tools➪Command Window. If that com-
mand isn’t available on your Visual Studio Tools menu, choose Start➪All
Programs➪Microsoft Visual Studio 2005➪Visual Studio Tools➪Visual Studio
2005 Command Prompt.

Reviewing the Console
Application Template

In the following sections, you take this first C# console app apart one section
at a time to understand how it works.

The program framework
The basic framework for all console applications starts with the following code:

using System;
using System.Collections.Generic;
using System.Text;

namespace ConsoleAppTemplate
{
public class Program
{
// This is where our program starts
public static void Main(string[] args)
{

// your code goes here
}

}
}

The program starts executing right after the statement containing Main()
and ends at the closed brace following Main(). I explain the meaning of these
statements in due course. More than that I cannot say for now.

The list of using directives can come immediately before or immediately
after the phrase namespace HelloWorld {. The order doesn’t matter. You
can apply using to lots of things in .NET. The whole business of namespaces
and using is explained in Bonus Chapter 2 on the CD.

33Chapter 2: Creating Your First C# Console Application

06_597043 ch02.qxd 9/20/05 1:12 PM Page 33

Comments
The template already has lots of lines, and I’ve added several other lines,
such as the following:

// This is where our program starts
public static void Main(string[] args)

C# ignores the first line in this example. This line is known as a comment.

Any line that begins with // or /// is free text and is ignored by C#. Consider
// and /// to be equivalent for now.

Why include lines in your program if the computer ignores them? Because
writing comments enables you to explain your C# statements. A program,
even a C# program, isn’t easy to understand. Remember that a programming
language is a compromise between what computers understand and what
humans understand. These comments can help you while you write the code,
and they’re especially helpful to the poor sap — possibly you — who has to
come along a year later and try to re-create your logic. Adding extra explana-
tory text makes the job much easier.

Comment early and often. It helps you and other programmers to remember
what you meant when you wrote all those C# statements.

The meat of the program
The real core of this program is embedded within the block of code marked
with Main(), as follows:

// prompt user to enter a name
Console.WriteLine(“Enter your name, please:”);

// now read the name entered
string sName = Console.ReadLine();

// greet the user with the name that was entered
Console.WriteLine(“Hello, “ + sName);

Save a ton of routine typing with the new C# Code Snippets feature. Snippets
are great for common statements like Console.WriteLine. Press Ctrl+K and
then Ctrl+X to see a pop-up menu of snippets. Scroll down the menu to cw
and press Enter. Visual Studio inserts the body of a Console.WriteLine()
statement with the insertion point between the parentheses, ready to go.

34 Part I: Creating Your First C# Programs

06_597043 ch02.qxd 9/20/05 1:12 PM Page 34

When you have a few of the shortcuts like cw, for, and if memorized, use
the even quicker technique: Type cw and press Tab. (Also try selecting some
lines of code, pressing Ctrl+K, and then pressing Ctrl+S. Choose something
like if. An if statement surrounds the selected code lines.) After you get
going, you can even create your own custom snippets.

The program begins executing with the first C# statement: Console.
WriteLine. This command writes the character string Enter your name,
please: to the console.

The next statement reads in the user’s answer and stores it in a variable, a
kind of “workbox,” called sName. (See Chapter 3 for more on these storage
locations.) The last line combines the string Hello, and the user’s name and
outputs the result to the console.

The final three lines cause the computer to wait for the user to press Enter
before proceeding. These lines ensure that the user has time to read the
output before the program continues, as follows:

// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

This step can be important depending on how you execute the program and
depending on the environment. Within Visual Studio, you can execute a pro-
gram in either of two ways. If you use the Debug➪Start command, Visual
Studio closes the output window as soon as the program terminates. The
same thing happens when you execute the program by double-clicking the
executable file’s icon in Windows Explorer.

No matter how you execute the program, waiting for the user to press Enter
before quitting solves any problems.

At this point, you can delete the lines from the first Console.WriteLine
through the next-to-last one, if you want a clean, empty Main() method as
a template for the next console app you write. Just don’t delete the final
Console.WriteLine and Console.Read statements. You’ll want those in all
of your console apps.

35Chapter 2: Creating Your First C# Console Application

06_597043 ch02.qxd 9/20/05 1:12 PM Page 35

36 Part I: Creating Your First C# Programs

06_597043 ch02.qxd 9/20/05 1:12 PM Page 36

Part II
Basic C#

Programming

07_597043 pt02.qxd 9/20/05 1:45 PM Page 37

In this part . . .

The newest e-commerce, B2B, dot-com, whiz-bang
program uses the same basic building blocks as

the most simple temperature-conversion program. This
part presents the basics of creating variables, performing
arithmetic operations, and controlling the execution path
through a program. This fundamental C# is essential train-
ing, especially if you’re new to programming.

07_597043 pt02.qxd 9/20/05 1:45 PM Page 38

Chapter 3

Living with Variability —
Declaring Value-Type Variables

In This Chapter
� Creating someplace to store things — the C# variable

� Using integers

� Handling fractional values

� Declaring other types of variables

� Handling numeric constants

� Changing types

The most fundamental of all concepts in programming is that of the vari-
able. A C# variable is like a small box in which you can store things, partic-

ularly numbers, for later use. The term variable is borrowed from the world of
mathematics. For example, the mathematician may say the following:

n = 1

This statement means that from this point forward, the mathematician can
use the term n to mean 1 — that is, until the mathematician changes it to
something else (a number, an equation, a concept, and so on).

The meaning of the term variable doesn’t differ much in the programming
world. The C# programmer may say the following:

int n;
n = 1;

Those statements define a “thing” n and assign it the value 1. From that point
forward in the program, the variable n has the value 1, until the programmer
changes it to some other number.

Unfortunately for programmers, C# places several limitations on variables —
limitations that mathematicians don’t have to consider.

08_597043 ch03.qxd 9/20/05 1:47 PM Page 39

Declaring a Variable
When the mathematician says, “n is equal to 1,” that means the term n is
equivalent to 1 in some ethereal way. The mathematician is free to introduce
variables in a willy-nilly fashion. For example, the mathematician may say the
following:

x = y2 + 2y + y
if k = y + 1 then
x = k2

Here, the mathematician has written a quadratic equation. Perhaps the vari-
ables x and y were previously defined somewhere. However, the mathemati-
cian then presents another variable k, sort of out of the blue. Here, k doesn’t
so much mean that k has the value of y plus 1 but that k takes the place of the
concept of y plus one — a sort of shorthand. Skim through any mathematics
book and you’ll see what I mean.

Programmers must be precise in their terminology. For example, a C# pro-
grammer may write the following code:

int n;
n = 1;

The first line means, “Carve off a small amount of storage in the computer’s
memory and assign it the name n.” This step is analogous to reserving one of
those storage lockers at the train station and slapping the label n on the side.
The second line says, “Store the value 1 in the variable n, thereby replacing
whatever that storage location already contains.” The train-locker equivalent
is, “Open the train locker, rip out whatever happens to be there, and shove a
1 in its place.”

The equals symbol (=) is called the assignment operator.

The mathematician says, “n equals 1.” The C# programmer says in a more
precise way, “Store the value 1 in the variable n.” (Think about the train
locker, and you see why that is preferable.) C# operators tell the computer
what you want to do. In other words, operators are verbs and not descrip-
tors. The assignment operator takes the value on its right and stores it in the
variable on the left.

What’s an int?
Mathematicians deal with concepts. They can make up variables any time
they want, and a single variable may have different meanings throughout the

40 Part II: Basic C# Programming

08_597043 ch03.qxd 9/20/05 1:47 PM Page 40

same equation. At best, mathematicians look at a variable as some amor-
phous value — at worst, some vague concept.

The mathematician may write the following:

n = 1;
n = 1.1;
n = House
n = “Texas is a dump”

Those lines equate the variable n with all sorts of things, and the mathemati-
cian thinks nothing of it. I don’t think about it much either except for that last
line. As the bumper stickers down here say, “Don’t mess with Texas.”

C# is not nearly that flexible. In C#, each variable has a fixed type. When you
allocate one of those train lockers, you have to pick the size you need. If you
picked an “integer locker,” you couldn’t turn around and hope to stuff the
entire state of Texas in it — maybe Rhode Island, but not Texas.

For the example in the preceding section of this chapter, you select a locker
that’s designed to handle an integer — C# calls it an int. Integers are the
counting numbers 1, 2, 3, and so on, plus 0 and the negative numbers –1, –2,
–3, and so on.

Before you can use a variable, you must declare it. After you declare a vari-
able as int, it can hold and regurgitate integer values, as the following exam-
ple demonstrates:

// declare a variable n
int n;
// declare an int variable m and initialize it
// with the value 2
int m = 2;
// assign the value stored in m to the variable n
n = m;

The first line after the comment is a declaration that creates a little storage
area, n, designed to hold an integer value. The initial value of n is not speci-
fied until it is assigned a value. The second declaration not only declares an
int variable m but also initializes it with a value of 2.

The term initialize means to assign an initial value. To initialize a variable is
to assign it a value for the first time. You don’t know for sure what the value
of a variable is until it has been initialized.

The final statement in the program assigns the value stored in m, which is 2,
to the variable n. The variable n continues to contain the value 2 until it is
assigned a new value. (The variable n doesn’t lose its value when you assign
it to m.)

41Chapter 3: Living with Variability — Declaring Value-Type Variables

08_597043 ch03.qxd 9/20/05 1:47 PM Page 41

Rules for declaring variables
You can initialize a variable as part of the declaration, as follows:

// declare another int variable and give it
// the initial value of 1
int o = 1;

This is equivalent to sticking a 1 into that int storage locker when you first
rent it, rather than opening the locker and stuffing in the value later.

Initialize a variable when you declare it. In most, but not all cases, C# initial-
izes the variable for you, but don’t rely on that fact.

You may declare variables anywhere (well, almost anywhere) within a pro-
gram. However, you may not use a variable until you declare it and set it to
some value. Thus, the following two assignments are not legal:

// the following is illegal because m is not assigned
// a value before it is used
int m;
n = m;
// the following is illegal because p has not been
// declared before it is used
p = 2;
int p;

Finally, you cannot declare the same variable twice.

Variations on a theme —
different types of int
Most simple variables are of type int. However, C# provides a number of
twists to the int variable type for special occasions.

All integer variable types are limited to whole numbers. The int type suffers
from other limitations as well. For example, an int variable can only store
values in the range from roughly –2 billion to 2 billion.

A distance of 2 billion inches is greater than the circumference of the Earth.
In case 2 billion isn’t quite large enough for you, C# provides an integer type
called long (short for long int) that can represent numbers as large as you
can imagine. The only problem with a long is that takes a larger train locker:
A long consumes 8 bytes (64 bits) — twice as much as a garden-variety int.

C# provides several other integer variable types, as shown in Table 3-1.

42 Part II: Basic C# Programming

08_597043 ch03.qxd 9/20/05 1:47 PM Page 42

Table 3-1 The Size and Range of C# Integer Types
Type Size Range of Values In Use

(bytes)

sbyte 1 –128 to 127 sbyte sb = 12;

byte 1 0 to 255 byte b = 12;

short 2 –32,768 to 32,767 short sn = 12345;

ushort 2 0 to 65,535 ushort usn = 62345;

int 4 –2 billion to 2 billion int n = 1234567890;

uint 4 0 to 4 billion (exact uint un = 3234567890U
values in the Cheat
Sheet inside the front
cover of this book)

long 8 –1020 to 1020 —
“a whole lot” long l = 123456789012L

ulong 8 0 to 2 × 1020 long ul = 123456789012UL

As I explain in the section “Declaring Numeric Constants,” later in this chap-
ter, fixed values such as 1 also have a type. By default, a simple constant such
as 1 is assumed to be an int. Constants other than an int must be marked
with their variable type. For example, 123U is an unsigned integer, uint.

Most integer variables are called signed, which means they can represent neg-
ative values. Unsigned integers can only represent positive values, but you
get twice the range in return. As you can see from Table 3-1, the names of
most unsigned integer types start with a u, while the signed types generally
don’t have a prefix.

Representing Fractions
Integers are great for most calculations. I made it into the 6th grade before I
ever found out that anything else existed. I still haven’t forgiven my 6th-grade
teacher for starting me down the slippery slope of fractions.

Many calculations involve fractions, which simple integers can’t accurately
represent. The common equation for converting from Fahrenheit to Celsius
temperatures demonstrates the problem, as follows:

// convert the temperature 41 degrees Fahrenheit
int nFahr = 41;
int nCelsius = (nFahr - 32) * (5 / 9)

43Chapter 3: Living with Variability — Declaring Value-Type Variables

08_597043 ch03.qxd 9/20/05 1:47 PM Page 43

This equation works just fine for some values. For example, 41 degrees
Fahrenheit is 5 degrees Celsius. “Correct, Mr. Davis,” says my 6th-grade teacher.

Okay, try a different value: 100 degrees Fahrenheit. Working through the
equation, 100 – 32 is 68; 68 times 5⁄9 is 37. “No,” she says, “the answer is 37.78.”
Even that’s wrong, because it’s really 37.777 . . . with the 7s repeating forever,
but I’m not going to push the point.

An int can only represent integer numbers. The integer equivalent of 37.78 is
37. This lopping off of the fractional part of a number to get it to fit into an
integer variable is called integer truncation.

Truncation is not the same thing as rounding. Truncation lops off the frac-
tional part. Rounding picks the closest integer value. Thus, truncating 1.9
results in 1. Rounding 1.9 results in 2.

For temperatures, 37 may be good enough. It’s not like you wear short-sleeve
shirts at 37.7 degrees but pull on a sweater at 37 degrees. But integer trunca-
tion is unacceptable for many, if not most, applications.

Actually, the problem is much worse than that. An int can’t handle the ratio
5⁄9 either; it always yields the value 0. Consequently, the equation as written in
this example calculates nCelsius as 0 for all values of nFahr. Even I admit
that’s unacceptable.

This book’s CD includes an int-based temperature conversion program con-
tained in the ConvertTemperatureWithRoundOff directory. At this point,
you may not understand all the details, but you can see the conversion equa-
tions and execute the program ConvertTemperatureWithRoundOff.exe to
see the results.

Handling Floating Point Variables
The limitations of an int variable are unacceptable for some applications.
The range generally isn’t a problem — the double-zillion range of a 64-bit-long
integer should be enough for anyone. However, the fact that an int is limited
to whole numbers is a bit harder to swallow.

In some cases, you need numbers that can have a nonzero fractional part.
Mathematicians call these real numbers. Somehow that always seemed like a
ridiculous name for a number. Are integer numbers somehow unreal?

Notice that I said a real number can have a nonzero fractional part — that is,
1.5 is a real number, but so is 1.0. For example, 1.0 + 0.1 is 1.1. Just keep that
point in mind as you read the rest of this chapter.

44 Part II: Basic C# Programming

08_597043 ch03.qxd 9/20/05 1:47 PM Page 44

Fortunately, C# understands real numbers. Real numbers come in two fla-
vors: floating point and decimal. Floating point is the most common type. I
describe the decimal type a little later in this chapter.

Declaring a floating point variable
A floating point variable carries the designation float, and you declare one
as shown in the following example:

float f = 1.0;

After you declare it as float, the variable f is a float for the rest of its nat-
ural instructions.

Table 3-2 describes the set of floating point types. All floating point variables
are signed (that is, there’s no such thing as a floating point variable that can’t
represent a negative value).

Table 3-2 The Size and Range of the Floating Point
Variable Types

Type Size Range of Values Accuracy In Use
(bytes) (no. of digits)

float 8 1.5 * 10–45 to 3.4 * 1038 6–7 float f = 1.2F;

double 16 5.0 * 10–324 to 1.7 * 10308 15–16 double d = 1.2;

You might think float is the default floating point variable type, but it’s actu-
ally the double. If you don’t specify the type for, say, 12.3, C# calls it a double.

The Accuracy column in Table 3-2 refers to the number of significant digits
that such a variable type can represent. For example, 5⁄9 is actually 0.555 . . .
with an unending sequence of 5s. However, a float variable is said to have
six significant digits of accuracy, which means numbers after the sixth digit
are ignored. Thus, 5⁄9 may appear as follows when expressed as a float:

0.5555551457382

You know that all the digits after the sixth 5 are untrustworthy.

A float actually has 6.5 significant digits. The extra half-digit of significance
stems from the fact that floating point accuracy is related to 10log to the base 2.
Probably more than you wanted to know.

45Chapter 3: Living with Variability — Declaring Value-Type Variables

08_597043 ch03.qxd 9/20/05 1:47 PM Page 45

The same number — 5⁄9 — may appear as follows when expressed as a double:

0.55555555555555557823

The double packs a whopping 15 to 16 significant digits.

C# floating point numbers default to double precision, so use double variable
types unless you have a specific reason to do otherwise. However, programs
that use either double or float are still said to be floating point programs.

Converting some more temperatures
Here’s the formula for converting from Fahrenheit to Celsius temperatures
using floating point variables:

double dCelsius = (dFahr - 32.0) * (5.0 / 9.0)

Your CD contains a floating point version of the temperature conversion pro-
gram called ConvertTemperatureWithFloat.

The following example shows the result of executing the double-based
ConvertTemperatureWithFloat program:

Enter temp in degrees Fahrenheit:100
Temperature in degrees Celsius = 37.7777777777778
Press Enter to terminate...

Examining some limitations
of floating point variables
You may be tempted to use floating point variables all the time because they
solve the truncation problem so nicely. Sure they use up a bit more memory,
but memory is cheap these days, so why not? But floating point variables
also have limitations.

Counting
You can’t use floating point variables as counting numbers. Some C# struc-
tures need to count (as in 1, 2, 3, and so on). You and I know that 1.0, 2.0, and
3.0 are counting numbers just as well as 1, 2, and 3, but C# doesn’t know that.
For example, given the accuracy limitations of floating points, how does C#
know that you aren’t actually saying 1.000001?

Whether you find that argument convincing or not, you can’t use a floating
point variable when counting things.

46 Part II: Basic C# Programming

08_597043 ch03.qxd 9/20/05 1:47 PM Page 46

Comparing numbers
You have to be careful when comparing floating point numbers. For example,
12.5 may be represented as 12.500001. Most people don’t care about that
little extra bit (no pun intended) on the end. However, the computer takes
things extremely literally. To C#, 12.500000 and 12.500001 are not the same
numbers.

So, if you add 1.1 to 1.1, you can’t tell whether the result is 2.2 or 2.200001. And
if you ask, “Is dDoubleVariable equal to 2.2?” you may not get the results you
expect. Generally, you have to resort to some bogus comparison like this: “Is
the absolute value of the difference between dDoubleVariable and 2.2 less
than .000001?” In other words, “within an acceptable margin of error.”

The Pentium processor plays a trick to make this problem less troublesome
than it otherwise may be: It performs floating point arithmetic in an especially
long double format — that is, rather than using 64 bits, it uses a whopping
80 bits. When rounding off an 80-bit float into a 64-bit float, you (almost)
always get the expected result, even if the 80-bit number was off a bit or two.

Calculation speed
Processors such as the x86 varieties used in older Windows-based PCs could
perform integer arithmetic much faster than arithmetic of the floating point
persuasion. In those days, programmers would go out of their way to limit a
program to integer arithmetic.

The ratio in additional speed on a Pentium III processor for a simple (perhaps
too simple) test of about 300,000,000 additions and subtractions was about
3 to 1. That is, for every double add, you could have done three int adds.
(Computations involving multiplication and division may show different
results.)

I had to write my addition and subtraction operations to avoid cache effects.
The program and the data were cached, but the compiler was not able to
cache any intermediate results in CPU registers.

Not-so-limited range
In the past, a floating point variable could represent a considerably larger
range of numbers than an integer type. It still can, but the range of the long
is large enough to render the point moot.

Even though a simple float can represent a very large number, the number
of significant digits is limited to about six. For example, 123,456,789F is the
same as 123,456,000F. (For an explanation of the F notation at the end of
these numbers, see “Declaring Numeric Constants” later in this chapter.)

47Chapter 3: Living with Variability — Declaring Value-Type Variables

08_597043 ch03.qxd 9/20/05 1:47 PM Page 47

Using the Decimal Type — A
Combination of Integers and Floats

As I explain in previous sections of this chapter, both the integer and floating
point types have their problems. Floating point variables have rounding prob-
lems associated with limits to their accuracy, while int variables just lop off
the fractional part of a variable. In some cases, you need a variable type that
offers the best of two worlds, as follows:

� Like a floating point variable, it can store fractions.

� Like an integer, numbers of this type offer exact values for use in
computations — for example, 12.5 is really 12.5 and not 12.500001.

Fortunately, C# provides such a variable type, called decimal. A decimal
variable can represent a number between 10–28 and 1028 — that’s a lot of zeros!
And it does so without rounding problems.

Declaring a decimal
Decimal variables are declared and used like any variable type, as follows:

decimal m1; // good
decimal m2 = 100; // better
decimal m3 = 100M; // best

The declaration of m1 allocates a variable m1 without initializing it to anything.
Until you assign it a value, the contents of m1 are indeterminate. But that’s
okay, because C# doesn’t let you use m1 for anything until you assign it a value.

The second declaration creates a variable m2 and initializes it to a value of 100.
What isn’t obvious is that 100 is actually of type int. Thus, C# must convert
the int into a decimal type before performing the initialization. Fortunately,
C# understands what you mean and performs the conversion for you.

The declaration of m3 is the best. This clever declaration initializes m3 with
the decimal constant 100M. The letter M at the end of the number specifies
that the constant is of type decimal. No conversion is required. (See the sec-
tion “Declaring Numeric Constants,” later in this chapter.)

48 Part II: Basic C# Programming

08_597043 ch03.qxd 9/20/05 1:47 PM Page 48

Comparing decimals, integers,
and floating point types
The decimal variable type seems to have all the advantages and none of the
disadvantages of int or double types. Variables of this type have a very
large range, they don’t suffer from rounding problems, and 25.0 is 25.0 and
not 25.00001.

The decimal variable type has two significant limitations, however. First, a
decimal is not considered a counting number because it may contain a frac-
tional value. Consequently, you can’t use them in flow control loops, which I
explain in Chapter 5.

The second problem with decimal variables is equally as serious or even
more so. Computations involving decimal values are significantly slower
than those involving either simple integer or floating point values — and I do
mean significant. On a crude benchmark test of 300,000,000 adds and sub-
tracts, the operations involving decimal variables were approximately 50
times slower than those involving simple int variables. The relative compu-
tational speed gets even worse for more complex operations. In addition,
most computational functions, such as calculating sines or exponents, are
not available for the decimal number type.

Clearly, the decimal variable type is most appropriate for applications such
as banking, in which accuracy is extremely important but the number of cal-
culations is relatively small.

Examining the bool Type — Is It Logical?
Finally, a logical variable type. Except in this case, I really mean a type logical.
The Boolean type bool can have two values: true or false. I kid thee not —
a whole variable type for just two values.

Former C and C++ programmers are accustomed to using the int value 0
(zero) to mean false and nonzero to mean true. That doesn’t work in C#.

You declare a bool variable as follows:

bool thisIsABool = true;

No conversion path exists between bool variables and any other types. In
other words, you can’t convert a bool directly into something else. (Even if
you could, you shouldn’t because it doesn’t make any sense.) In particular,
you can’t cast a bool into an int (such as false becomes 0) or a string
(such as false becomes “false”).

49Chapter 3: Living with Variability — Declaring Value-Type Variables

08_597043 ch03.qxd 9/20/05 1:47 PM Page 49

Checking Out Character Types
A program that can do nothing more than spit out numbers may be fine for
mathematicians, accountants, insurance agents with their mortality figures,
and folks calculating cannon-shell trajectories. (Don’t laugh. The original
computers were built to generate tables of cannon-shell trajectories to help
artillery gunners.) However, for most applications, programs must deal with
letters as well as numbers.

C# treats letters in two distinctly different ways: individual characters of type
char (usually pronounced “char” as in singe or burn) and strings of charac-
ters called, cleverly enough, string.

Char variable type
The char variable is a box capable of holding a single character. Character
constants appear as a character surrounded by a pair of single quotation
marks, as in this example:

char c = ‘a’;

You can store any single character from the Roman, Hebrew, Arab, Cyrillic,
and most other alphabets. You can also store Japanese katakana and hira-
gana characters and many Japanese and Chinese kanjis.

In addition, char is considered a counting type. That means you can use a
char type to control the looping structures that I describe in Chapter 5.
Character variables do not suffer from rounding problems.

The character variable includes no font information. So, you may store in a
char variable what you think is a perfectly good kanji (and it may well be);
however, when you view the character, it can look like garbage if you are not
looking at it through the eyes of the proper font.

Special char types
Some characters within a given font are not printable in the sense that you
don’t see anything when you look at them on the computer screen or printer.
The most obvious example of this is the space, which is represented by the
character ‘ ‘ (single quote, space, single quote). Other characters have no
letter equivalent — for example, the tab character. C# uses the backslash to
flag these characters, as shown in Table 3-3.

50 Part II: Basic C# Programming

08_597043 ch03.qxd 9/20/05 1:47 PM Page 50

Table 3-3 Special Characters
Character Constant Value

‘\n’ New line

‘\t’ Tab

‘\0’ Null character

‘\r’ Carriage return

‘\\’ Backslash

The string type
Another common variable type is the string. The following examples show
how you declare and initialize string variables:

// declare now, initialize later
string someString1;
someString1 = “this is a string”;
// or initialize when declared
string someString2 = “this is a string”;

A string constant, often called a string literal, is a set of characters sur-
rounded by double quotes. The characters in a string include the special
characters shown in Table 3-3. A string cannot be written across a line in
the C# source file, but it can contain the new-line character, as the following
examples show:

// the following is not legal
string someString = “This is a line
and so is this”;
// however, the following is legal
string someString = “This is a line\nand so is this”;

When written out with Console.WriteLine, the last line in this example
places the two phrases on separate lines, as follows:

This is a line
and so is this

51Chapter 3: Living with Variability — Declaring Value-Type Variables

08_597043 ch03.qxd 9/20/05 1:47 PM Page 51

A string is not a counting type. A string is also not a value-type — no
“string” exists that’s intrinsic to the processor. Only one of the common oper-
ators works on string objects: The + operator concatenates two strings into
one. For example:

string s = “this is a phrase”
+ “ and so is this”;

This code sets the string variable s equal to the following character string:

“this is a phrase and so is this”

One other thing: The string with no characters, written “” (two double
quotes in a row), is a valid string, called an empty string (or sometimes a
null string). A null string (“”) is different from a null char (‘\0’) and from
a string containing any amount of space (“ “).

By the way, all the other data types in this chapter are value types. The
string type, however, is not a value type, as the next section explains.

What’s a Value-Type?
All C# instructions have to be implemented in the machine instructions of the
native CPU — an Intel-class processor in the case of PCs. These CPUs also
have the concept of variables. For example, the Intel processor has eight
internal locations known as registers, each of which can store a single int.
Without getting into the details of the CPU, however, I’ll just say that the
types described in this chapter, with the exception of decimal and string,
are intrinsic to the processor. Thus, a CPU instruction exists that says, “Add
one int to another int.” A similar instruction exists for adding a double to a
double. Because these types of variables are built into the processor, they
are known as intrinsic variable types.

In addition, the variable types that I describe in this chapter are of fixed
length — again with the exception of string. A fixed-length variable type
always occupies the same amount of memory. So, if you assign a = b, C# can
transfer the value of b into a without taking extra measures designed to
handle variable-length types. This characteristic gives these types of vari-
ables the name value-types.

The types int, double, and bool, and their close derivatives, like unsigned
int, are intrinsic variable types. The intrinsic variable types plus decimal
are also known as value-types. The string type is neither.

52 Part II: Basic C# Programming

08_597043 ch03.qxd 9/20/05 1:47 PM Page 52

The programmer-defined types that I explain in Chapter 6, known as refer-
ence-types, are neither value-types nor intrinsic. The string type is a refer-
ence type, although the C# compiler does accord it some special treatment
because strings are so widely used.

Comparing string and char
Although strings deal with characters, the string type is amazingly different
from the char. Of course, certain trivial differences exist. You enclose a char-
acter with single quotes as in the following example:

‘a’

On the other hand, you put double quotes around a string:

“this is a string”

The rules concerning strings are not the same as those concerning charac-
ters. For one thing, you know right up front that a char is a single character,
and that’s it. For example, the following code makes no sense, either as addi-
tion or as concatenation:

char c1 = ‘a’;
char c2 = ‘b’;
char c3 = c1 + c2

Actually, this code almost compiles, but with a completely different meaning
than intended. These statements convert c1 into an int consisting of the
numeric value of c1. C# also converts c2 into an int and then adds the two
integers. The error occurs when trying to store the results back into c3 —
numeric data may be lost storing an int into the smaller char. In any case,
the operation makes no sense.

A string, on the other hand, can be any length. So, concatenating two strings,
as follows, does make sense:

string s1 = “a”;
string s2 = “b”;
string s3 = s1 + s2; // result is “ab”

As part of its library, C# defines an entire suite of string operations. I describe
them in Chapter 9.

53Chapter 3: Living with Variability — Declaring Value-Type Variables

08_597043 ch03.qxd 9/20/05 1:47 PM Page 53

Declaring Numeric Constants
There are very few absolutes in life; however, I’m about to give you a C#
absolute: Every expression has a value and a type. In a declaration such as
int n, you can easily see that the variable n is an int. Further, you can rea-
sonably assume that the type of a calculation n + 1 is an int. However, what
type is the constant 1?

The type of a constant depends on two things: its value and the presence of an
optional descriptor letter at the end of the constant. Any integer type less than
2 billion is assumed to be an int. Numbers larger than 2 billion are assumed to
be long. Any floating pointing number is assumed to be a double.

Table 3-4 demonstrates constants that have been declared to be of a particu-
lar type. The case of these descriptors is not important. Thus, 1U and 1u are
equivalent.

54 Part II: Basic C# Programming

Naming conventions
Programming is hard enough without program-
mers making it harder. To make your C# source
code easier to wade through, adopt a naming
convention and stick to it. As much as possible,
your naming convention should follow those
adopted by other C# programmers:

� The names of things other than variables
start with a capital letter, and variables
start with a lowercase letter. Make these
names as descriptive as possible, which
often means that a name consists of multi-
ple words. These words should be capital-
ized but butted up against each other with
no underscore between them — for exam-
ple, thisIsALongVariableName.

� The first letter of the variable name indi-
cates the type of the variable. Most of these
letters are straightforward: f for float, d
for double, s for string, and so on. The
only one that’s even the slightest bit different

is n for int. One exception to this rule exists:
For reasons that stretch way back into the
Fortran programming language of the ’60s,
the single letters i, j, and k are also used as
common names for an int.

Hungarian notation seems to have fallen out of
favor, at least in .NET programming circles. I still
prefer it, however, because it enables me to
know in a flash the type of each variable in a
program without referring back to the declara-
tion. For the record, the non-Hungarians have a
point. With recent Visual Studio versions, you
can simply rest the cursor on a variable to have
its data type revealed in a tooltip box. That
makes the Hungarian prefix a bit less useful,
though as a creature of habit, I’ve held out for
Hungarian. Rather than jump into the religious
wars about such things, you can just choose the
naming convention you prefer.

08_597043 ch03.qxd 9/20/05 1:47 PM Page 54

Table 3-4 Common Constants Declared along with Their Type
Constant Type

1 int

1U unsigned int

1L long int (avoid lowercase l ; it’s too much like
the digit 1)

1.0 double

1.0F float

1M decimal

true bool

false bool

‘a’ char

‘\n’ char (the character newline)

‘\x123’ char (the character whose numeric value is hex 123)1

“a string” string

“” string (an empty string)
1”hex” is short for hexadecimal (numbers in base 16 rather than base 10).

Changing Types — The Cast
Humans don’t treat different types of counting numbers differently. For exam-
ple, a normal person (as distinguished from a C# programmer) doesn’t think
about the number 1 as being signed, unsigned, short, or long. Although C# con-
siders these types to be different, even C# realizes that a relationship exists
between them. For example, the following code converts an int into a long:

int nValue = 10;
long lValue;
lValue = nValue; // this is OK

An int variable can be converted into a long because any value of an int
can be stored in a long and because they are both counting numbers. C#
makes the conversion for you automatically without comment.

55Chapter 3: Living with Variability — Declaring Value-Type Variables

08_597043 ch03.qxd 9/20/05 1:47 PM Page 55

A conversion in the opposite direction can cause problems, however. For
example, the following is illegal:

long lValue = 10;
int nValue;
nValue = lValue; // this is illegal

Some values that you can store in a long do not fit in an int (4 billion, for
example). C# generates an error in this case because data may be lost during
the conversion process. This type of bug is difficult to catch.

But what if you know that the conversion is okay? For example, even though
lValue is a long, maybe you know that its value can’t exceed 100 in this par-
ticular program. In that case, converting the long variable lValue into the
int variable nValue would be okay.

You can tell C# that you know what you’re doing by means of a cast:

long lValue = 10;
int nValue;
nValue = (int)lValue; // this is now OK

In a cast, you place the name of the type you want in parentheses and put it
immediately in front of the value you want to convert. This cast says, “Go
ahead and convert the long lValue into an int — I know what I’m doing.” In
retrospect, the assertion that you know what you’re doing may seem overly
confident, but it’s often valid.

A counting number can be converted into a floating point number automati-
cally, but a cast from a floating point into a counting number requires a cast,
as follows:

double dValue = 10.0;
long lValue = (long)dValue;

All conversions to and from a decimal require a cast. In fact, all numeric types
can be converted into all other numeric types through the application of a cast.
Neither bool nor string can be converted directly into any other type.

Built-in C# functions can convert a number, character, or boolean into its
string “equivalent.” For example, you can convert the bool value true into
the string “true”; however, you cannot consider this a direct conversion.
The bool true and string “true” are completely different things.

56 Part II: Basic C# Programming

08_597043 ch03.qxd 9/20/05 1:47 PM Page 56

Chapter 4

Smooth Operators
In This Chapter
� Performing a little arithmetic

� Doing some logical arithmetic

� Complicating matters with compound logical operators

Mathematicians create variables and manipulate them in various ways,
adding them, multiplying them, and — here’s a toughie — even integrat-

ing them. Chapter 3 describes how to declare and define variables. However, it
says nothing about how to use variables to get anything done after you’ve
declared them. This chapter looks at the operations you can perform on vari-
ables to actually get something done. Operations require operators, such as +, -
, =, <, and &. I cover arithmetic, logical, and other operators in this chapter.

Writing programs that get things done is good. You’ll never make it as a C#
programmer if your programs don’t actually do something — unless, of
course, you’re a consultant.

Performing Arithmetic
The set of arithmetic operators breaks down into several groups: the simple
arithmetic operators, the assignment operators, and a set of special opera-
tors unique to programming. After you’ve digested these, you also need to
digest a separate set of logical operators. Bon appétit!

Simple operators
You learned most of the simple operators in elementary school. Table 4-1
lists them. Note: Computers use an asterisk (*) for multiplication, not the
multiplication sign (×).

09_597043 ch04.qxd 9/20/05 1:48 PM Page 57

Table 4-1 The Simple Operators
Operator What It Means

- (unary) Take the negative of

* Multiply

/ Divide

+ Add

- (binary) Subtract

% Modulo

Most of these operators are called binary operators because they operate on
two values: one on the left side of the operator and one on the right side. The
one exception is the unary negative. However, this one is just as straightfor-
ward as the others, as I show in the following example:

int n1 = 5;
int n2 = -n1; // n2 now has the value -5

The value of -n is the negative of the value of n.

The modulo operator may not be quite as familiar to you. Modulo is similar
to the remainder after division. Thus, 5 % 3 is 2 (5 / 3 = 1, remainder 2), and
25 % 3 is 1 (25 / 3 = 8, remainder 1). Read it “five modulo three” or simply
“five mod three.”

The strict definition of % is “the operator such that: x = (x / y) + x % y.” Divide
x by y. Add x modulo y (which equals the remainder after x / y). The result
is x.

The arithmetic operators other than modulo are defined for all the numeric
types. The modulo operator is not defined for floating point numbers
because you have no remainder after division of floating point values.

Operating orders
The value of some expressions may not be clear. Consider, for example, the
following expression:

int n = 5 * 3 + 2;

Does the programmer mean “multiply 5 times 3 and then add 2,” which is 17, or
does this line mean “multiply 5 times the sum of 3 and 2,” which gives you 25?

58 Part II: Basic C# Programming

09_597043 ch04.qxd 9/20/05 1:48 PM Page 58

C# generally executes common operators from left to right. So, the preceding
example assigns the value 17 to the variable n.

C# determines the value of n in the following example by first dividing 24 by 6
and then dividing the result of that operation by 2 (as opposed to dividing 24
by the ratio 6 over 2):

int n = 24 / 6 / 2

However, the various operators have a hierarchy, or order of precedence. C#
scans an expression and performs the operations of higher precedence
before those of lower precedence. For example, multiplication has higher
precedence than addition. Many books take great pains to explain the order
of precedence, but frankly that’s a complete waste of time (and brain cells).

Don’t rely on yourself or someone else knowing the precedence order. Make
your meaning (to human readers of the code as well as to the compiler)
explicit with parentheses.

The value of the following expression is clear, regardless of the operators’
order of precedence:

int n = (7 % 3) * (4 + (6 / 3));

Parentheses can override the order of precedence by stating exactly how the
compiler is to interpret the expression. C# looks for the innermost parentheses
for the first expression to evaluate, dividing 6 by 3 to yield 2. The result follows:

int n = (7 % 3) * (4 + 2); // 2 = 6 / 3

Then C# works its way outward, evaluating each set of parentheses in turn,
innermost to outermost, as follows:

int n = 1 * 6; // 6 = (4 + 2)

And here’s the final result:

int n = 6

The “always use parentheses” rule has perhaps one exception. I don’t con-
done this behavior, but many programmers omit parentheses in examples
like the following, because multiplication has higher precedence than addi-
tion. Consider the following example:

int n = 7 + 2 * 3; // same as 7 + (2 * 3)

In this case, the value of the variable n is 13 (not 27).

59Chapter 4: Smooth Operators

09_597043 ch04.qxd 9/20/05 1:48 PM Page 59

The assignment operator
C# has inherited an interesting concept from C and C++: Assignment is itself a
binary operator. The assignment operator has the value of the argument to
the right. The assignment has the same type as both arguments, which must
match.

This new view of the assignment operator has no effect on the expressions
you’ve seen so far:

n = 5 * 3;

In this example, 5 * 3 is 15 and an int. The assignment operator stores the
int on the right into the int on the left and returns the value 15. However,
this new view of the assignment operator allows the following:

m = n = 5 * 3;

Assignments are evaluated in series from right to left. The right-hand assign-
ment stores the value 15 into n and returns 15. The left-hand assignment
stores 15 into m and returns 15, which is then dropped on the floor, leaving
the value of each variable as 15.

This strange definition for assignment makes the following rather bizarre
expressions legal (but I would avoid this):

int n;
int m;
n = m = 2;

I avoid chaining assignments that way because it’s less clear to human readers.
Anything that can confuse people reading your code (including you) is worth
avoiding because confusion breeds errors. A huge proportion of computer pro-
gramming, from language rules and constructs to naming conventions and rec-
ommended programmer practices, is devoted to fighting error. Join the fight.

C# extends the simple operators with a set of operators constructed from
other binary operators. For example:

n += 1;

This expression is equivalent to the following:

n = n + 1;

An assignment operator exists for just about every binary operator. I’m really
not sure how these various assignment operators came to be, but there they
are. Table 4-2 shows the most common compound assignment operators.

60 Part II: Basic C# Programming

09_597043 ch04.qxd 9/20/05 1:48 PM Page 60

Table 4-2 Common Compound Assignment Operators
Operator Meaning

a += b Assign a + b to a

a -= b Assign a - b to a

a *= b Assign a * b to a

a /= b Assign a / b to a

a %= b Assign a % b to a

a &= b Assign a & b to a (& is a logical operator, discussed later)

a |= b Assign a | b to a (| is a logical operator)

a ^= b Assign a ^ b to a (^ is a logical operator)

Table 4-2 omits a couple of advanced compound assignment operators, <<=
and >>=. I mention the “bit-shifting” operators later in the chapter.

The increment operator
Of all the additions that you may perform in programming, adding 1 to a vari-
able is the most common, as follows:

n = n + 1; // increment n by 1

61Chapter 4: Smooth Operators

Why have an increment operator?
The reason for the increment operator lies in the
obscure fact that the PDP-8 computer of the
1970s had an increment instruction. This would
be of little interest today were it not for the fact
that the C language, the original precursor to C#,
was originally written for the PDP-8. Because
that machine had an increment instruction, n++
generated fewer machine instructions than n =
n + 1. As slow as those machines were, saving
a few machine instructions was a big deal.

Today, compilers are smarter and no difference
exists in the execution time for n++ and n = n
+ 1, so the increment operator is no longer

needed. However, programmers are creatures
of habit, and the operator remains to this day.
You almost never see a C++ programmer incre-
ment a value using the longer but more intuitive
n = n + 1. Instead, you see the increment
operator.

Further, when standing by itself (that is, not part
of a larger expression), the postincrement oper-
ator almost always appears instead of the
preincrement operator. There’s no reason other
than habit and the fact that it looks cooler, espe-
cially to C++ programmers: n++.

09_597043 ch04.qxd 9/20/05 1:48 PM Page 61

C# defines the assignment operator shorthand as follows:

n += 1; // increment n by 1

Even that’s not good enough. C# provides this even shorter version:

++n; // increment n by 1

All three of the preceding statements are equivalent — they all increment n
by 1.

The increment operator is strange enough, but believe it or not, C# has two
increment operators: ++n and n++. The first one, ++n, is called the preincre-
ment operator, while n++ is the postincrement operator. The difference is
subtle but important.

Remember that every expression has a type and a value. In the following
code, both ++n and n++ are of type int:

int n;
n = 1;
int p = ++n;
n = 1;
int m = n++;

But what are the resulting values of m and p? (Hint: The choices are 1 or 2.)
The value of p is 2, and the value of m is 1. That is, the value of the expression
++n is the value of n after being incremented, while the value of the expres-
sion n++ is the value of n before it is incremented. Either way, the resulting
value of n is 2.

Equivalent decrement operators — that is, n-- and --n — exist to replace n
= n – 1. These work in exactly the same way as the increment operators.

Performing Logical Comparisons —
Is That Logical?

C# also provides a set of logical comparison operators, as shown in Table 4-3.
These operators are called logical comparisons because they return either a
true or a false of type bool.

62 Part II: Basic C# Programming

09_597043 ch04.qxd 9/20/05 1:48 PM Page 62

Table 4-3 The Logical Comparison Operators
Operator Operator Is True If . . .

a == b a has the same value as b

a > b a is greater than b

a >= b a is greater than or equal to b

a < b a is less than b

a <= b a is less than or equal to b

a != b a is not equal to b

Here’s an example that involves a logical comparison:

int m = 5;
int n = 6;
bool b = m > n;

This example assigns the value false to the variable b because 5 is not
greater than 6.

The logical comparisons are defined for all numeric types, including float,
double, decimal, and char. All the following statements are legal:

bool b;
b = 3 > 2; // true
b = 3.0 > 2.0; // true
b = ‘a’ > ‘b’; // false - alphabetically later = greater
b = ‘A’ < ‘a’; // true - upper A is less than lower a
b = ‘A’ < ‘b’; // true - all upper are less than all lower
b = 10M > 12M; // false

The comparison operators always produce results of type bool. The compar-
ison operators other than == are not valid for variables of type string. (Not
to worry; C# offers other ways to compare strings.)

Comparing floating point numbers:
Is your float bigger than mine?
Comparing two floating values can get dicey, and you need to be careful with
these comparisons. Consider the following comparison:

63Chapter 4: Smooth Operators

09_597043 ch04.qxd 9/20/05 1:48 PM Page 63

float f1;
float f2;
f1 = 10;
f2 = f1 / 3;
bool b1 = (3 * f2) == f1;
f1 = 9;
f2 = f1 / 3;
bool b2 = (3 * f2) == f1;

Notice that the fifth and eighth lines in the preceding example each contain
first an assignment operator (=) and then a logical comparison (==). These
are different animals. C# does the logical comparison and then assigns the
result to the variable on the left.

The only difference between the calculations of b1 and b2 is the original
value of f1. So, what are the values of b1 and b2? The value of b2 is clearly
true: 9 / 3 is 3; 3 * 3 is 9; and 9 equals 9. Voilà!

The value of b1 is not so obvious: 10 / 3 is 3.333.... 3.333... * 3 is 9.999.... Is
9.999... equal to 10? That depends on how clever your processor and compiler
are. On a Pentium or later processor, C# is not smart enough to realize that b1
should be true if the calculations are moved away from the comparison.

You can use the system absolute value function to compare f1 and f2 as
follows:

Math.Abs(f1 - 3.0 * f2) < .00001; // use whatever level of accuracy

This function returns true for both cases. You can use the constant
Double.Epsilon instead of .00001 to get the maximum level of accuracy.
Epsilon is the smallest possible difference between two nonequal double
variables.

For a self-guided tour of the System.Math class, where Abs and many other
useful mathematical functions live, choose Help➪Index and type Math in the
Look For box.

Compounding the confusion with
compound logical operations
The bool variables have another set of operators defined just for them, as
shown in Table 4-4.

64 Part II: Basic C# Programming

09_597043 ch04.qxd 9/20/05 1:48 PM Page 64

Table 4-4 The Compound Logical Operators
Operator Operator Is True If . . .

!a a is false.

a & b a and b are true.

a | b Either a or b or else both are true (also known as a and/or b).

a ^ b a is true or b is true but not both (also known as a xor b).

a && b a is true and b is true with short-circuit evaluation.

a || b a is true or b is true with short-circuit evaluation. (I discuss
short-circuit evaluation in the nearby text.)

The ! operator is the logical equivalent of the minus sign. For example, !a
(read “not a”) is true if a is false and false if a is true. Can that be true?

The next two operators are straightforward enough. First, a & b is only true
if both a and b are true. And a | b is true if either a or b is true (or both).
The ^ (also known as exclusive or — xor) operator is sort of an odd beast. An
exclusive or is true if either a or b is true but not if both a and b are true.

All three operators produce a logical bool value as their result.

The &, |, and ^ operators also have a bitwise operator version. When applied
to int variables, these operators perform their magic on a bit-by-bit basis.
Thus, 6 & 3 is 2 (01102 & 00112 is 00102), 6 | 3 is 7 (01102 | 00112 is 01112), and
6 ^ 3 is 5 (01102 ^ 00112 is 01012). Binary arithmetic is really cool but beyond
the scope of this book.

The remaining two logical operators are similar to, but subtly different from,
the first three. Consider the following example:

bool b = (boolExpression1) & (boolExpression2);

In this case, C# evaluates boolExpression1 and boolExpression2. It then
looks to see whether they are both true before deciding the value of b.
However, this may be a wasted effort. If one expression is false, there’s no
reason to perform the other. Regardless of the value of the second expres-
sion, the result will be false.

The && operator enables you to avoid evaluating both expressions unneces-
sarily, as shown in the following example:

bool b = (boolExpression1) && (boolExpression2);

65Chapter 4: Smooth Operators

09_597043 ch04.qxd 9/20/05 1:48 PM Page 65

In this case, C# evaluates boolExpression1. If it’s false, b is set to false and the
program continues on its merry way. On the other hand, if boolExpression1 is
true, C# evaluates boolExpression2 and stores the result in b.

The && operator uses short-circuit evaluation because it short-circuits around
the second boolean expression, if necessary.

The || operator works the same way, as shown in the following expression:

bool b = (boolExpression1) || (boolExpression2);

If boolExpression1 is true, there’s no point in evaluating boolExpression2
because the result is always true.

You can read these operators as “short-circuit and” and “short-circuit or.”

Finding the Perfect Date —
Matching Expression Types

In calculations, an expression’s type is just as important as its value.
Consider the following expression:

int n;
n = 5 * 5 + 7;

My calculator says the resulting value of n is 32. However, that expression
also has a type.

Written in “type language,” the preceding expression becomes the following:

int [=] int * int + int;

To evaluate the type of an expression, follow the same pattern you use to
evaluate the expression’s value. Multiplication takes precedence over addi-
tion. An int times an int is an int. Addition comes next. An int plus an int
is an int. In this way, you can reduce the preceding expression as follows:

int * int + int
int + int
int

66 Part II: Basic C# Programming

09_597043 ch04.qxd 9/20/05 1:48 PM Page 66

Calculating the type of an operation
The matching of types burrows down to the subexpression. Each expression
has a type, and the type of the left- and right-hand sides of an operator must
match what is expected of that operator, as follows:

type1 <op> type2 ➪ type3

(The arrow means “produces.”) Both type1 and type2 must be compatible
with the operator op.

Most operators come in various flavors. For example, the multiplication oper-
ator comes in the following forms:

int * int ➪ int
uint * uint ➪ uint
long * long ➪ long
float * float ➪ float
decimal * decimal ➪ decimal
double * double ➪ double

Thus, 2 * 3 uses the int * int version of the * operator to produce the int 6.

Implicit type conversion
Okay, that’s great for multiplying two ints or two floats. But what happens
when the left- and right-hand arguments are not of the same type? For example,
what happens in the following case?

int n1 = 10;
double d2 = 5.0;
double dResult = n1 * d2;

First, C# doesn’t have an int * double operation. C# could just generate an
error message and leave it at that; however, it tries to make sense out of what
the programmer intended. C# does have int * int and double * double ver-
sions of multiplication. C# could convert d2 into its int equivalent, but that
would involve losing any fractional part of the number (digits to the right of
the decimal point). Instead, C# converts the int n1 into a double and uses
the double * double operator. This is known as an implicit promotion.

An implicit promotion is implicit because C# does it automatically, and it’s a
promotion because it involves some natural concept of uphill and downhill.
The list of multiplication operators is in promotion order from int to double
or from int to decimal — from narrower type to wider type. No implicit con-
version exists between the floating point types and decimal. Converting from
the more capable type, such as double, to a less capable type, such as int, is
known as a demotion.

67Chapter 4: Smooth Operators

09_597043 ch04.qxd 9/20/05 1:48 PM Page 67

A promotion is also known as an up conversion, and a demotion is also known
as a down conversion.

Implicit demotions, or down conversions, are not allowed. C# generates an
error message in such cases.

Explicit type conversion — the cast
What if C# was wrong? What if the programmer really did want to perform
integer multiplication?

You can change the type of any value-type variable through the use of the
cast operator. A cast consists of the desired type contained in parentheses
and placed immediately in front of the variable or expression in question.

Thus, the following expression uses the int * int operator:

int n1 = 10;
double d2 = 5.0;
int nResult = n1 * (int)d2;

The cast of d2 to an int is known as an explicit demotion or downcast. The
conversion is explicit because the programmer explicitly declared her
intent — duh.

You can make an explicit conversion between any two value types, whether
up or down the promotion ladder.

Avoid implicit type conversion. Make any changes in value-types explicit
through the use of a cast.

Leave logical alone
C# offers no type conversion path to or from the bool type.

Assigning types
The same matching of types applies to the assignment operator.

Inadvertent type mismatches that generate compiler error messages usually
occur in the assignment operator, not at the point of the actual mismatch.

Consider the following multiplication example:

int n1 = 10;
int n2 = 5.0 * n1;

68 Part II: Basic C# Programming

09_597043 ch04.qxd 9/20/05 1:48 PM Page 68

The second line in this example generates an error message due to a type
mismatch, but the error occurs at the assignment — not at the multiplication.
Here’s the horrible tale: To perform the multiplication, C# implicitly converts
n1 to a double. C# can then perform double multiplication, the result of
which is the all-powerful double.

The type of the right-hand and left-hand operators of the assignment opera-
tor must match, but the type of the left-hand operator cannot change.
Because C# refuses to demote an expression implicitly, the compiler gener-
ates the following error message: Cannot implicitly convert type
double to int.

C# allows this expression with an explicit cast, as follows:

int n1 = 10;
int n2 = (int)(5.0 * n1);

(The parentheses are necessary because the cast operator has very high
precedence.) This works — explicit demotion is okay. The n1 is promoted to a
double, the multiplication is performed, and the double result is demoted to
an int. However, you have to worry about the sanity of the programmer
because 5 * n1 is so much easier for both the programmer and the C# compiler.

The Ternary Operator — I Wish It Were
a Bird and Would Fly Away

Most operators take two arguments — a few take one. Only one operator
takes three arguments — the ternary operator. This operator is maligned —
and for good reason. It has the following format:

bool expression ? expression1 : expression2

I’ll confuse you even more with the following example:

int a = 1;
int b = 2;
int nMax = (a > b) ? a : b;

If a is greater than b (the condition in parentheses), the value of the expres-
sion is a. If a is not greater than b, the value of the expression is b.

Expressions 1 and 2 can be as complicated as you like, but they must be true
expressions; they cannot contain declarations or other nonexpression-type
statements.

69Chapter 4: Smooth Operators

09_597043 ch04.qxd 9/20/05 1:48 PM Page 69

The ternary operator is unpopular for the following reasons:

� It isn’t necessary. Using the type of if statements described in Chapter
5 has the same effect and is easier to understand.

� The ternary is a true expression no matter how much it may look like
some type of cryptic if statement. For example, expressions 1 and 2
must be of the same type. This leads to the following:

int a = 1;
double b = 0.0;
int nMax = (a > b) ? a : b;

This statement doesn’t compile, even though nMax would have ended up
with the value of a. Because a and b must be of the same type, a is pro-
moted to a double to match b. The resulting type of ?: is now double,
which must be demoted to an int before the assignment is allowed, as
follows:

int a = 1;
double b = 0.0;
int nMax;
// this works
nMax = (int)((a > b) ? a : b);
// so does this
nMax = (a > b) ? a : (int)b;

You rarely see the ternary operator in use.

70 Part II: Basic C# Programming

09_597043 ch04.qxd 9/20/05 1:48 PM Page 70

Chapter 5

Controlling Program Flow
In This Chapter
� Making decisions if you can

� Deciding what else to do

� Looping without going in a circle

� Using the while loop

� Using the for loop

Consider the following simple program:

using System;
namespace HelloWorld
{
public class Program
{
// This is where the program starts
static void Main(string[] args)
{
// prompt user to enter a name
Console.WriteLine(“Enter your name, please:”);
// now read the name entered
string sName = Console.ReadLine();
// greet the user with the entered name
Console.WriteLine(“Hello, “ + sName);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

Besides introducing you to a few fundamentals of C# programming, this pro-
gram is almost worthless. It simply spits back out whatever you typed in. You
can imagine more complicated example programs that take in input, perform
some type of calculations, generate some type of output (otherwise, why do
the calculations?), and then exit at the bottom. However, even a program
such as that can be of only limited use.

10_597043 ch05.qxd 9/20/05 1:50 PM Page 71

One of the key elements of any computer processor is its ability to make deci-
sions. When I say “make decisions,” I mean the processor sends the flow of
execution down one path of instructions if a condition is true or down
another path if the condition is not true. Any programming language must
offer this fundamental capability to control the flow of execution.

The three basic types of flow control are the if statement, the loop, and the
jump. I describe one of the looping controls, the foreach, in Chapter 6.

Controlling Program Flow
The basis of all C# decision-making capability is the if statement (the basis
of all my decisions is the maybe), as follows:

if (bool-expression)
{

// control passes here if the expression is true
}
// control passes to this statement whether the expression is true or not

A pair of parentheses immediately following the keyword if contains some
conditional expression of type bool. (See Chapter 4 for a discussion of bool
expressions.) Immediately following the expression is a block of code set off
by a pair of braces. If the expression is true, the program executes the code
within the braces. If the expression is not true, the program skips the code in
the braces.

The if statement is easier to understand with a concrete example:

// make sure that a is not negative:
// if a is less than 0 . . .
if (a < 0)
{

// . . .then assign 0 to a
a = 0;

}

This segment of code makes sure that the variable a is nonnegative — greater
than or equal to 0. The if statement says, “If a is less than 0, assign 0 to a.”

The braces are not required. C# treats if(bool-expression) statement;
as if it had been written if(bool-expression) {statement;}. The general
consensus (and my preference) is to always use braces for better clarity. In
other words, don’t ask — just do it.

72 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:50 PM Page 72

Introducing the if statement
Consider a small program that calculates interest. The user enters the princi-
pal and the interest rate, and the program spits out the resulting value for
each year. (This is not a sophisticated program.) The simplistic calculation
appears as follows in C#:

// calculate the value of the principal plus interest
decimal mInterestPaid;
mInterestPaid = mPrincipal * (mInterest / 100);
// now calculate the total
decimal mTotal = mPrincipal + mInterestPaid;

The first equation multiplies the principal mPrincipal times the interest
mInterest to get the interest to be paid, mInterestPaid. (You divide by 100
because interest is usually input in percent.) The interest to be paid is then
added back into the principal, resulting in a new principal, which is stored in
the variable mTotal.

The program must anticipate almost anything when dealing with human input.
For example, you don’t want to accept a negative principal or interest (even if
you do end up paying negative interest). The following CalculateInterest
program includes checks to make sure that neither of these things happen:

// CalculateInterest
// calculate the interest amount
// paid on a given principal. If either
// the principal or the interest rate is
// negative, then generate an error message.
using System;
namespace CalculateInterest
{
public class Program
{
public static void Main(string[] args)
{
// prompt user to enter source principal
Console.Write(“Enter principal:”);
string sPrincipal = Console.ReadLine();
decimal mPrincipal = Convert.ToDecimal(sPrincipal);
// make sure that the principal is not negative
if (mPrincipal < 0)
{
Console.WriteLine(“Principal cannot be negative”);
mPrincipal = 0;

}
// enter the interest rate
Console.Write(“Enter interest:”);
string sInterest = Console.ReadLine();
decimal mInterest = Convert.ToDecimal(sInterest);

73Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:50 PM Page 73

// make sure that the interest is not negative either
if (mInterest < 0)
{
Console.WriteLine(“Interest cannot be negative”);
mInterest = 0;

}
// calculate the value of the principal
// plus interest
decimal mInterestPaid;
mInterestPaid = mPrincipal * (mInterest / 100);
// now calculate the total
decimal mTotal = mPrincipal + mInterestPaid;
// output the result
Console.WriteLine(); // skip a line
Console.WriteLine(“Principal = “ + mPrincipal);
Console.WriteLine(“Interest = “ + mInterest + “%”);
Console.WriteLine();
Console.WriteLine(“Interest paid = “ + mInterestPaid);
Console.WriteLine(“Total = “ + mTotal);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The CalculateInterest program begins by prompting the user for his
name using WriteLine() to write a string to the console.

Tell the user exactly what you want. If possible, specify the format you want
as well. Users don’t respond well to uninformative prompts like >.

The example program uses the ReadLine() command to read in whatever
the user types, until he presses Enter, in the form of a string. Because the
program is looking for the principal in the form of a decimal, the input
string must be converted using the Convert.ToDecimal() command. The
result is stored in mPrincipal.

The ReadLine(), WriteLine(), and ToDecimal() commands are all exam-
ples of function calls. A function call delegates some work to another part of
the program, called a function. I describe function calls in detail in Chapter 7;
however, these function calls are straightforward. You should be able to get
at least the gist of the meaning using my extraordinarily insightful explana-
tory narrative. If that doesn’t work, ignore my narrative. If that still doesn’t
work, skim through the beginning of Chapter 7.

74 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:50 PM Page 74

The next line checks mPrincipal. If it’s negative, the program outputs a
nasty-gram, indicating that the user has fouled up. The program does the
same thing for the interest rate. That done, the program performs the sim-
plistic interest calculation outlined earlier and spits out the result using a
series of WriteLine() commands.

The program generates the following output with a legitimate principal and a
usurious interest rate that is legal in most states:

Enter principal:1234
Enter interest:21

Principal = 1234
Interest = 21%

Interest paid = 259.14
Total = 1493.14
Press Enter to terminate...

Executing the program with illegal input generates the following output:

Enter principal:1234
Enter interest:-12.5
Interest cannot be negative

Principal = 1234
Interest = 0%

Interest paid = 0
Total = 1234
Press Enter to terminate...

Indent the lines within an if clause to enhance readability. C# ignores such
indentation, but it helps us humans. Most programming editors support auto-
indenting, whereby the editor automatically indents as soon as you enter the
if command. To set auto-indenting in Visual Studio, choose Tools➪Options.
Then expand the Text Editor node. From there, expand C#. Finally, click Tabs.
On this page, enable Smart Indenting and set the number of spaces per
indent to your preference. I use two spaces per indent for this book. Set the
Tab Size to the same value.

Examining the else statement
Some functions must check for mutually exclusive conditions. For example,
the following code segment stores the maximum of two numbers, a and b, in
the variable max:

75Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:50 PM Page 75

// store the maximum of a and b into the variable max
int max;
// if a is greater than b . . .
if (a > b)
{

// . . .save off a as the maximum
max = a;

}
// if a is less than or equal to b . . .
if (a <= b)
{

// . . .save off b as the maximum
max = b;

}

The second if statement is needless processing because the two conditions
are mutually exclusive. If a is greater than b, a can’t possibly be less than or
equal to b. C# defines an else clause for just this case. The else keyword
defines a block of code that’s executed if the if block is not.

The code segment to calculate the maximum now appears as follows:

// store the maximum of a and b into the variable max
int max;
// if a is greater than b . . .
if (a > b)
{

// . . .save off a as the maximum; otherwise . . .
max = a;

}
else
{

// . . .save off b as the maximum
max = b;

}

If a is greater than b, the first block is executed; otherwise, the second block
is executed. In the end, max contains the greater of a or b.

Avoiding even the else
Sequences of else clauses can get confusing. Some programmers, myself
included, like to avoid them when doing so doesn’t cause even more confu-
sion. You could write the maximum calculation like this:

// store the maximum of a and b into the variable max
int max;
// start by assuming that a is greater than b
max = a;

76 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:50 PM Page 76

// if it is not . . .
if (b > a)
{
// ...then you can change your mind
max = b;

}

Some programmers avoid this style like the plague, and I can sympathize.
That doesn’t mean I’m going to change; it just means I sympathize. You see
both this style and the “else style” in common use.

Embedded if statements
The CalculateInterest program warns the user of illegal input; however,
continuing with the interest calculation, even if one of the values is illogical,
doesn’t seem quite right. It causes no real harm here because the interest cal-
culation takes little or no time and the user can ignore the results, but some
calculations aren’t nearly so quick. In addition, why ask the user for an inter-
est rate after she has already entered an invalid value for the principal? The
user knows that the results of the calculation will be invalid no matter what
she enters next.

The program should only ask the user for an interest rate if the principal is
reasonable and only perform the interest calculation if both values are valid.
To accomplish this, you need two if statements, one within the other.

An if statement found within the body of another if statement is called an
embedded or nested statement.

The following program, CalculateInterestWithEmbeddedTest, uses
embedded if statements to avoid stupid questions if a problem with the
input is detected:

// CalculateInterestWithEmbeddedTest
// calculate the interest amount
// paid on a given principal. If either
// the principal or the interest rate is
// negative, then generate an error message
// and don’t proceed with the calculation.
using System;
namespace CalculateInterestWithEmbeddedTest
{
public class Program
{
public static void Main(string[] args)
{
// define a maximum interest rate
int nMaximumInterest = 50;

77Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:50 PM Page 77

// prompt user to enter source principal
Console.Write(“Enter principal:”);
string sPrincipal = Console.ReadLine();
decimal mPrincipal = Convert.ToDecimal(sPrincipal);
// if the principal is negative . . .
if (mPrincipal < 0)
{
// . . .generate an error message . . .
Console.WriteLine(“Principal cannot be negative”);

}
else
{
// . . .otherwise, enter the interest rate
Console.Write(“Enter interest:”);
string sInterest = Console.ReadLine();
decimal mInterest = Convert.ToDecimal(sInterest);
// if the interest is negative or too large . . .
if (mInterest < 0 || mInterest > nMaximumInterest)
{
// . . .generate an error message as well
Console.WriteLine(“Interest cannot be negative “ +

“or greater than “ + nMaximumInterest);
mInterest = 0;

}
else
{
// both the principal and the interest appear to be
// legal; calculate the value of the principal
// plus interest
decimal mInterestPaid;
mInterestPaid = mPrincipal * (mInterest / 100);
// now calculate the total
decimal mTotal = mPrincipal + mInterestPaid;
// output the result
Console.WriteLine(); // skip a line
Console.WriteLine(“Principal = “ + mPrincipal);
Console.WriteLine(“Interest = “ + mInterest + “%”);
Console.WriteLine();
Console.WriteLine(“Interest paid = “ + mInterestPaid);
Console.WriteLine(“Total = “ + mTotal);

}
}
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The program first reads the principal from the user. If the principal is nega-
tive, the program outputs an error message and quits. If the principal is not
negative, control passes to the else clause, where the program continues
executing.

78 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:50 PM Page 78

The interest-rate test has been improved in this sample. Here, the program
requires an interest rate that’s nonnegative (a mathematical law) and less than
some maximum (a judiciary law — we can only wish that credit cards had an
interest rate limit). This if statement uses the following compound test:

if (mInterest < 0 || mInterest > nMaximumInterest)

This statement is true if mInterest is less than 0 or mInterest is greater
than nMaximumInterest. Notice that I declare nMaximumInterest at the top
of the program rather than hard code it as a constant here.

Define important constants at the top of your program.

Encoding constants in variables at the top of your program serves the follow-
ing purposes:

� It gives each constant an explanatory name. nMaximumInterest is
much more descriptive than 50.

� It makes the constant easy to find in the event that you need to
change it.

� It makes the constant easier to change. Notice that the same
nMaximumInterest appears in the error message. Changing
nMaximumInterest to 60, for example, changes not only the test
but also the error message.

Chapter 6 has more to say about using constants.

Entering a correct principal but a negative interest rate generates the follow-
ing output:

Enter principal:1234
Enter interest:-12.5
Interest cannot be negative or greater than 50.
Press Enter to terminate...

Only by entering both a legal principal and a legal interest rate does the pro-
gram generate the desired calculation, as follows:

Enter principal:1234
Enter interest:12.5

Principal = 1234
Interest = 12.5%

Interest paid = 154.250
Total = 1388.250
Press Enter to terminate...

79Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:50 PM Page 79

Looping Commands
The if statement enables a program to take a different path through the code
being executed depending on the results of a bool expression. This statement
allows drastically more interesting programs than a program without decision-
making capability. Adding the ability to execute a set of instructions in an iter-
ative manner adds another quantum jump in capability.

Consider the CalculateInterest program from the section “Introducing the
if statement,” earlier in this chapter. Performing this simple interest calcula-
tion with a calculator or by hand with a piece of paper would be much easier
than writing and executing a program.

What if you could calculate the amount of principal for each of several suc-
ceeding years? That would be a lot more useful. A simple macro in a Microsoft
Excel spreadsheet would still be easier, but at least you’re getting closer.

What you need is a way for the computer to execute the same short
sequence of instructions multiple times. This is known as a loop.

Introducing the while loop
The C# keyword while introduces the most basic form of execution loop, as
follows:

while(bool-expression)
{

// . . .repeatedly executed as long as the expression is true
}

When the while loop is first encountered, the bool expression is evaluated.
If the expression is true, the code within the block is executed. When the
block of code reaches the closed brace, control returns to the top, and the
whole process starts over again. (It’s kind of the way I feel when I’m walking
the dog. He and I loop around and around the yard until he . . . well, until
we’re finished.) Control passes beyond the closed brace the first time the
bool expression is evaluated and turns out to be false.

If the condition is not true the first time the while loop is encountered, the
set of commands within the braces is never executed.

Programmers often get sloppy in their speech. (Programmers are sloppy
most of the time.) A programmer may say that a loop is executed until some
condition is false. To me, that implies that control passes outside the loop no
matter where the program happens to be executing as soon as the condition

80 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:50 PM Page 80

becomes false. This is definitely not the case. The program does not check
whether the condition is still true until control specifically passes back to the
top of the loop.

You can use the while loop to create the CalculateInterestTable pro-
gram, a looping version of the CalculateInterest program.
CalculateInterestTable, as follows, calculates a table of principals
showing accumulated annual payments:

// CalculateInterestTable - calculate the interest
// paid on a given principle over a period
// of years
using System;
namespace CalculateInterestTable
{
using System;
public class Program
{
public static void Main(string[] args)
{
// prompt user to enter source principal
Console.Write(“Enter principal:”);
string sPrincipal = Console.ReadLine();
decimal mPrincipal = Convert.ToDecimal(sPrincipal);
// if the principal is negative . . .
if (mPrincipal < 0)
{
// . . .generate an error message . . .
Console.WriteLine(“Principal cannot be negative”);

}
else
{
// . . .otherwise, enter the interest rate
Console.Write(“Enter interest:”);
string sInterest = Console.ReadLine();
decimal mInterest = Convert.ToDecimal(sInterest);
// if the interest is negative . . .
if (mInterest < 0)
{
// . . .generate an error message as well
Console.WriteLine(“Interest cannot be negative”);
mInterest = 0;

}
else
{
// both the principal and the interest appear to be
// legal; finally, input the number of years
Console.Write(“Enter number of years:”);
string sDuration = Console.ReadLine();
int nDuration = Convert.ToInt32(sDuration);
// verify the input
Console.WriteLine(); // skip a line

81Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:50 PM Page 81

Console.WriteLine(“Principal = “ + mPrincipal);
Console.WriteLine(“Interest = “ + mInterest + “%”);
Console.WriteLine(“Duration = “ + nDuration + “years”);
Console.WriteLine();
// now loop through the specified number of years
int nYear = 1;
while(nYear <= nDuration)
{
// calculate the value of the principal
// plus interest
decimal mInterestPaid;
mInterestPaid = mPrincipal * (mInterest / 100);
// now calculate the new principal by adding
// the interest to the previous principal
mPrincipal = mPrincipal + mInterestPaid;
// round off the principal to the nearest cent
mPrincipal = decimal.Round(mPrincipal, 2);
// output the result
Console.WriteLine(nYear + “-” + mPrincipal);
// skip over to next year
nYear = nYear + 1;

}
}

}
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The output from a trial run of CalculateInterestTable appears as follows:

Enter principal:1234
Enter interest:12.5
Enter number of years:10

Principal = 1234
Interest = 12.5%
Duration = 10years

1-1388.25
2-1561.78
3-1757.00
4-1976.62
5-2223.70
6-2501.66
7-2814.37
8-3166.17
9-3561.94
10-4007.18
Press Enter to terminate...

82 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:50 PM Page 82

Each value represents the total principal after the number of years elapsed,
assuming simple interest compounded annually. For example, the value of
$1,234 at 12.5 percent is $3,561.94 after 9 years.

Most of the values show two decimal places for the cents in the amount.
Because trailing zeros are not displayed in some versions of C#, some values
may show only a single or even no digit after the decimal point. Thus, $12.70
may be displayed as 12.7. If so, you can fix this by using the special format-
ting characters described in Chapter 9. (C# 2.0 appears to show trailing zeros
by default.)

The CalculateInterestTable program begins by reading the principal and
interest values from the user and checking to make sure that they’re valid.
CalculateInterestTable then reads the number of years over which to
iterate and stores this value in the variable nDuration.

Before entering the while loop, the program declares a variable nYear, which
it initializes to 1. This will be the “current year” — that is, this number changes
“each year” as the program loops. If the year number contained in nYear is less
than the total duration contained in nDuration, the principal for “this year”
is recalculated by calculating the interest based on the “previous year.” The
calculated principal is output along with the current-year offset.

The statement decimal.Round() rounds the calculated value to the nearest
fraction of a cent.

The key to the program lies in the last line within the block. The statement
nYear = nYear + 1; increments nYear by 1. If nYear begins with the value
3, its value will be 4 after this expression. This incrementing moves the calcu-
lations along from one year to the next.

After the year has been incremented, control returns to the top of the loop,
where the value nYear is compared to the requested duration. In the example
run, if the current year is less than 10, the calculation continues. After being
incremented 10 times, the value of nYear becomes 11, which is greater than
10, and program control passes to the first statement after the while loop.
That is to say, the program stops looping.

Most looping commands follow this same basic principle of incrementing a
counter until it exceeds a previously defined value.

The counting variable nYear in CalculateInterestTable must be declared
and initialized before the while loop in which it is used. In addition, the
nYear variable must be incremented, usually as the last statement within the
loop. As this example demonstrates, you have to look ahead to see what vari-
ables you will need. This pattern is easier after you’ve written a few thousand
while loops, like I have.

83Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:50 PM Page 83

When writing while loops, don’t forget to increment the counting variable, as
I have in this example:

int nYear = 1;
while (nYear < 10)
{

// . . .whatever . . .
}

(I left off the nYear = nYear + 1;.) Without the increment, nYear is always
1, and the program loops forever. This is called an infinite loop. The only way
to exit an infinite loop is to terminate the program (or reboot). (I guess noth-
ing is truly infinite, with the possible exception of a particle passing through
the event window of a black hole.)

Make sure that the terminating condition can be satisfied. Usually, this means
your counting variable is being incremented properly. Otherwise, you’re look-
ing at an infinite loop, an angry user, bad press, and 50 years of poor harvest.

Infinite loops are a common mistake, so don’t get embarrassed when you get
caught in one.

Using the do...while loop
A variation of the while loop is the do...while loop. In this case, shown as
follows, the condition is not checked until the end of the loop:

int nYear = 1;
do
{

// . . .some calculation . . .
nYear = nYear + 1;

} while (nYear < nDuration);

In contrast to the while loop, the do...while loop is executed at least once,
regardless of the value of nDuration. The do...while loop is fairly uncom-
mon in practice.

Breaking up is easy to do
You can use two special controls to bail out of a loop: break and continue.
Executing the break command causes control to pass to the first expression
immediately following the loop. The similar continue command passes con-
trol straight back up to the conditional expression at the top of the loop to
start over and get it right this time.

84 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:50 PM Page 84

I have rarely used continue in my programming career, and I doubt that many
programmers even remember that it exists. Don’t forget about it completely
because it may be a trick question in an interview or crossword puzzle.

For example, suppose you want to take your money out of the bank as soon
as the principal exceeds a certain number of times the original amount, irre-
spective of how many years’ duration. (After all, how much money do you
really need?) You could easily accommodate this by adding the following
code within the loop:

if (mPrincipal > (maxPower * mOriginalPrincipal))
{
break;

}

Anyone who watches The Simpsons as much as I do knows who maxPower is.
(Hint: Doh!)

The break clause is not executed until the condition within the if compari-
son is true — in this case, until the calculated principal is maxPower times
the original principal or more. Executing the break statement passes control
outside of the while(nYear <= nDuration) statement, and the program
continues on to resume execution immediately after the loop.

For a version of the interest table program with this addition, see the
CalculateInterestTableWithBreak program on the CD. (I don’t include
the listing here, for brevity’s sake.)

An example output from this program appears as follows:

Enter principal:100
Enter interest:25
Enter number of years:100

Principal = 100
Interest = 25%
Duration = 100 years
Quit if a multiplier of 10 is reached

1-125.00
2-156.25
3-195.31
4-244.14
5-305.18
6-381.48
7-476.85
8-596.06
9-745.08
10-931.35
11-1164.19
Press Enter to terminate...

85Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:50 PM Page 85

The program terminates as soon as the calculated principal exceeds $1,000 —
thank goodness, you didn’t have to wait 100 years!

Looping until you get it right
The CalculateInterestTable program is smart enough to terminate in the
event that the user enters an invalid balance or interest amount. However,
jumping immediately out of the program just because the user mistypes
seems to be a little harsh. Even my user-unfriendly accounting program gives
me three chances to get my password right before it gives up.

A combination of while and break enables the program to be a little more
flexible. The CalculateInterestTableMoreForgiving program demon-
strates the principle as follows:

// CalculateInterestTableMoreForgiving - calculate the interest
// paid on a given principal over a period
// of years. This version lets the user try again
// to input the legal principal and interest.
using System;
namespace CalculateInterestTableMoreForgiving
{
using System;
public class Program
{
public static void Main(string[] args)
{
// define a maximum interest rate
int nMaximumInterest = 50;
// prompt user to enter source principal; keep prompting
// until you get the correct value
decimal mPrincipal;
while(true)
{
Console.Write(“Enter principal:”);
string sPrincipal = Console.ReadLine();
mPrincipal = Convert.ToDecimal(sPrincipal);
// exit if the value entered is correct
if (mPrincipal >= 0)
{
break;

}
// generate an error on incorrect input
Console.WriteLine(“Principal cannot be negative”);
Console.WriteLine(“Try again”);
Console.WriteLine();

}
// now enter the interest rate
decimal mInterest;
while(true)

86 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:50 PM Page 86

{
Console.Write(“Enter interest:”);
string sInterest = Console.ReadLine();
mInterest = Convert.ToDecimal(sInterest);
// don’t accept interest that is negative or too large . . .
if (mInterest >= 0 && mInterest <= nMaximumInterest)
{
break;

}
// . . .generate an error message as well
Console.WriteLine(“Interest cannot be negative “ +

“or greater than “ + nMaximumInterest);
Console.WriteLine(“Try again”);
Console.WriteLine();

}
// both the principal and the interest appear to be
// legal; finally, input the number of years
Console.Write(“Enter number of years:”);
string sDuration = Console.ReadLine();
int nDuration = Convert.ToInt32(sDuration);
// verify the input
Console.WriteLine(); // skip a line
Console.WriteLine(“Principal = “ + mPrincipal);
Console.WriteLine(“Interest = “ + mInterest + “%”);
Console.WriteLine(“Duration = “ + nDuration + “ years”);
Console.WriteLine();
// now loop through the specified number of years
int nYear = 1;
while(nYear <= nDuration)
{
// calculate the value of the principal
// plus interest
decimal mInterestPaid;
mInterestPaid = mPrincipal * (mInterest / 100);
// now calculate the new principal by adding
// the interest to the previous principal
mPrincipal = mPrincipal + mInterestPaid;
// round off the principal to the nearest cent
mPrincipal = decimal.Round(mPrincipal, 2);
// output the result
Console.WriteLine(nYear + “-” + mPrincipal);
// skip over to next year
nYear = nYear + 1;

}
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

87Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:50 PM Page 87

This program works largely the same way as do the previous examples,
except in the area of the user input. This time, a while loop replaces the if
statement used in previous examples to detect invalid input:

decimal mPrincipal;
while(true)
{
Console.Write(“Enter principal:”);
string sPrincipal = Console.ReadLine();
mPrincipal = Convert.ToDecimal(sPrincipal);
// exit if the value entered is correct
if (mPrincipal >= 0)
{
break;

}
// generate an error on incorrect input
Console.WriteLine(“Principal cannot be negative”);
Console.WriteLine(“Try again”);
Console.WriteLine();

}

This section of code inputs a value from the user within a loop. If the value of
the text is okay, the program exits the loop and continues. However, if the
input has an error, the user is presented with an error message, and control
passes back to start over.

Think about it this way: The program continues to loop until the user gets it
right.

Notice that the conditionals have been reversed because the question is no
longer whether illegal input should generate an error message, but whether
the correct input should exit the loop. In the interest section, for example,
consider the following test:

mPrincipal < 0 || mPrincipal > nMaximumInterest

This test changes to the following:

mInterest >= 0 && mInterest <= nMaximumInterest

Clearly, mInterest >= 0 is the opposite of mInterest < 0. What may not
be so obvious is that the OR (||) operator is replaced with an AND (&&) oper-
ator. This says, “Exit the loop if the interest is greater than zero AND less than
the maximum amount (in other words, is correct).”

By the way, how could you revise CalculateInterestTableMoreForgiving
to let the user run calculation after calculation, entering new principal and
interest figures each time until she wanted to quit? Hint: Use another
while(true) loop with its own exit condition.

88 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:50 PM Page 88

One last point to note: The mPrincipal variable must be declared outside of
the loop due to scope rules, which I explain in the next section of this chapter.

It may sound obvious, but the expression true evaluates to true. Therefore,
while(true) is your archetypical infinite loop. It is the embedded break
command that exits the loop. Therefore, if you use the while(true) loop,
make sure that your break condition can occur.

The output from an example execution of this program showing my igno-
rance appears as follows:

Enter principal:-1000
Principal cannot be negative
Try again

Enter principal:1000
Enter interest:-10
Interest cannot be negative or greater than 50
Try again

Enter interest:10
Enter number of years:5

Principal = 1000
Interest = 10%
Duration = 5 years

1-1100.0
2-1210.00
3-1331.00
4-1464.10
5-1610.51
Press Enter to terminate...

The program refuses to accept a negative principal or interest, patiently
explaining the mistake on each loop.

Explain exactly what the user did wrong before looping back for further
input. Showing an example may also help, especially for formatting problems.
A little diplomacy can’t hurt, either.

Focusing on scope rules
A variable declared within the body of a loop is only defined within that loop.
Consider the following code snippet:

89Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:51 PM Page 89

int nDays = 1;
while(nDays < nDuration)
{

int nAverage = nValue / nDays;
// . . .some series of commands . . .
nDays = nDays + 1;

}

The variable nAverage is not defined outside the while loop. Various reasons
for this exist, but consider this one: The first time the loop executes, the pro-
gram encounters the declaration int nAverage and the variable is defined. On
the second loop, the program again encounters the declaration for nAverage,
and were it not for the scope rules, this would be an error because the variable
is already defined.

I could provide other, more convincing reasons than this one, but this should
do for now.

Suffice it to say that the variable nAverage goes away, as far as C# is con-
cerned, as soon as the program reaches the closed brace and gets redefined
each time through the loop.

Experienced programmers say that the scope of the variable nAverage is lim-
ited to the while loop.

Understanding the Most Common
Control: the for Loop

The while loop is the simplest and second most commonly used looping
structure in C#. However, the while loop is used about as often as metric
tools in an American machine shop compared to the for loop.

The for loop has the following structure:

for(initExpression; condition; incrementExpression)
{

// . . .body of code . . .
}

When the for loop is encountered, the program first executes the
initExpression expression. It then executes the condition. If the condi-
tion expression is true, the program executes the body of the loop, which is
surrounded by the braces immediately following the for command. Upon
reaching the closed brace, control passes to incrementExpression and
then back to condition, where the loop starts over again.

90 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:51 PM Page 90

In fact, the definition of a for loop can be converted into the following while
loop:

initExpression;
while(condition)
{

// . . .body of code . . .
incrementExpression;

}

An example
You can better see how the for loop works with the following example:

// here is some C# expression or other
a = 1;
// now loop for awhile
for(int nYear = 1; nYear < nDuration; nYear = nYear + 1)
{

// . . .body of code . . .
}
// the program continues here
a = 2;

Assume that the program has just executed the a = 1; expression. Next,
the program declares the variable nYear and initializes it to 1. That done, the
program compares nYear to nDuration. If nYear is less than nDuration,
the body of code within the braces is executed. Upon encountering the closed
brace, the program jumps back to the top and executes the nYear = nYear +
1 clause before sliding back over to the nYear < nDuration comparison.

The nYear variable is undefined outside the scope of the for loop, which
includes the loop’s heading as well as its body.

Why do you need another loop?
Why do you need the for loop if C# has an equivalent while loop? The short
answer is that you don’t — the for loop doesn’t bring anything to the table
that the while loop can’t already do.

However, the sections of the for loop exist for convenience and to clearly
establish the three parts that every loop should have: the setup, exit criteria,
and increment. Not only is this easier to read, but it’s also easier to get right.
(Remember that the most common mistakes in a while loop are forgetting to
increment the counting variable and failing to provide the proper exit criteria.)

91Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:51 PM Page 91

Beyond any sort of song-and-dance justification that I may make, the most
important reason to understand the for loop is that it’s the loop that every-
one uses and it’s the one that you’ll see 90 percent of the time when reading
other people’s code.

The for loop is designed so that the first expression initializes a counting vari-
able and the last section increments it; however, the C# language does not
enforce any such rule. You can do anything you want in these two sections —
however, you would be ill-advised to do anything but initialize and increment
the counting variable.

The increment operator is particularly popular when writing for loops. (I
describe the increment operator along with other operators in Chapter 4.)
The previous for loop is usually written as follows:

for(int nYear = 1; nYear < nDuration; nYear++)
{

// . . .body of code . . .
}

You almost always see the postincrement operator used in a for loop instead
of the preincrement operator, although the effect in this case is the same.
There’s no reason other than habit and the fact that it looks cooler. (Next
time you want to break the ice, just haul out your C# listing full of postincre-
ment operators to show how cool you really are. It almost never works, but
it’s worth a try.)

The for loop has one variation that I really can’t claim to understand. If
the logical condition expression is missing, it is assumed to be true. Thus,
for(;;) is an infinite loop.

You will see for(;;) used as an infinite loop more often than while(true).
I have no idea why that’s the case.

Nested Loops
One loop can appear within an outer loop, as follows:

for(. . .some condition . . .)
{
for(. . .some other condition . . .)
{
// . . .do whatever . . .

}
}

92 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:51 PM Page 92

The inner loop is executed to completion upon each pass through the outer
loop. The loop variable (such as nYear) used in the inner for loop is not
defined outside the inner loop’s scope.

A loop contained within another loop is called a nested loop. Nested loops
cannot “cross.” For example, the following is not possible:

do // start a do loop
{
for(. . .) // start some for loop
{
} while(. . .) // end do..while loop

} // end for loop

I’m not even sure what that would mean, but that doesn’t matter because the
compiler will tell you it’s not legal anyway.

A break statement within a nested loop breaks out of the inner loop only. In
the following example, the break statement exits loop B and goes back into
loop A:

// for loop A
for(. . .some condition . . .)
{
// for loop B
for(. . .some other condition . . .)
{
// . . .do whatever . . .
if (something is true)
{
break; // breaks out of loop B and not A

}
}

}

C# doesn’t have a break command that exits both loops simultaneously.

That’s not as big a limitation as it sounds. In practice, the often-complex logic
contained within such nested loops is better encapsulated in a function.
Executing a return from within any of the loops exits the function, thereby
bailing out of all loops, no matter how nested they may be. I describe func-
tions and the return statement in Chapter 7.

The following whimsical DisplayXWithNestedLoops program uses a pair of
nested loops to display a large X down the application console:

// DisplayXWithNestedLoops - use a pair of nested loops to
// create an X pattern
using System;
namespace DisplayXWithNestedLoops

93Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:51 PM Page 93

{
public class Program
{
public static void Main(string[] args)
{
int nConsoleWidth = 40;
// iterate through the rows of the “box”
for(int nRowNum = 0;

nRowNum < nConsoleWidth;
nRowNum += 2)

{
// now iterate through the columns
for (int nColumnNum = 0;

nColumnNum < nConsoleWidth;
nColumnNum++)

{
// the default character is a space
char c = ‘ ‘;
// if the column number and row number are the same . . .
if (nColumnNum == nRowNum)
{
// . . .replace the space with a backslash
c = ‘\\’;

}
// if the column is on the opposite side of the row . . .
int nMirrorColumn = nConsoleWidth - nRowNum;
if (nColumnNum == nMirrorColumn)
{
// . . .replace the space with a slash
c = ‘/’;

}
// output whatever character at the current
// row and column
Console.Write(c);

}
Console.WriteLine();

}
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The DisplayXWithNestedLoops program begins by defining an arbitrary
number of rows and columns representing the size of the X to be drawn. Make
this number larger, and the X stretches off the bottom of the application
window.

94 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:51 PM Page 94

The program uses a for loop to iterate through the rows of the X. The pro-
gram then enters a second for loop, which iterates across the columns of the
display. This draws a matrix on the display. The only problem left is to decide
which cells within the matrix get spaces, thereby making them invisible, and
which cells get characters. Fill in the proper cells, and you get an X.

The program first defines a char c, which it initializes to the default value of
space. The program then compares the row and column number. If they’re
equal, the program replaces the space with a backward slash.

Remember that a backslash is used to mark special characters. For example,
‘\n’ is a newline. The special character ‘\\’ is the backslash. This is called
escaping a character, specifically the character after the backslash. Escaping
a character tells the compiler to treat it in a special way.

By itself, replacing the space when the rows and columns are equal would
draw a line from the upper left of the matrix to the bottom right. To get a mir-
rored slash, the program places a forward slash (‘/’) when the number of
the column on the opposite side is equal to the row number.

The result from this program is as follows:

\
\ /
\ /
\ /
\ /
\ /
\ /
\ /
\ /
\ /
/

/ \
/ \

/ \
/ \

/ \
/ \

/ \
/ \

/ \
Press Enter to terminate...

Not much to it, but I thought it was cute.

If you want to get serious, check out the DisplaySin program on the CD,
which uses the same type of logic to display a sine wave vertically down the
application display. I may be a nerd (actually there’s no doubt about it), but I
think that program is really cool. I cut my programming teeth on programs
like that.

95Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:51 PM Page 95

The switch Control
You often want to test a variable for numerous different values. For example,
nMaritalStatus may be 0 for unmarried, 1 for married, 2 for divorced, 3 for
widowed (I think I got them all — oh, wait), or 4 for none of your business. To
differentiate among these values, you could use the following series of if
statements:

if (nMaritalStatus == 0)
{
// must be unmarried
// . . .do something . . .

}
else
{
if (nMaritalStatus == 1)
{
// must be married
// . . .do something else . . .

And so on.

You can see that these repetitive if statements get old quickly. Testing for
multiple cases is such a common occurrence that C# provides a special con-
struct to decide between a set of mutually exclusive conditions. This control
is called the switch, and it works as follows:

switch(nMaritalStatus)
{
case 0:

// . . .do the unmarried stuff . . .
break;

case 1:
// . . .do the married stuff . . .
break;

case 2:
// . . .do the divorced stuff . . .
break;

case 3:
// . . .do the widowed stuff . . .
break;

case 4:
// . . .get out of my face . . .
break;

default:
// goes here if doesn’t pass any of the cases;
// this is probably an error condition
break;

}

96 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:51 PM Page 96

The expression at the top of the switch statement is evaluated. In this case,
the expression is simply the variable nMaritalStatus. The value of that
expression is then compared against the value of each of the cases. Control
passes to the default clause if no match is found.

The argument to the switch statement can also be a string, as follows:

string s = “Davis”;
switch(s)
{
case “Davis”:

// . . .control will actually pass here . . .
break;

case “Smith”:
// . . .do the married stuff . . .
break;

case “Jones”:
// . . .do the divorced stuff . . .
break;

case “Hvidsten”:
// . . .do the widowed stuff . . .
break;

default:
// goes here if doesn’t pass any of the cases
break;

}

Using the switch statement involves the following severe restrictions:

� The argument to the switch() must be one of the counting types or a
string.

� Floating point values are excluded.

� The various case values must refer to values of the same type as the
switch expression.

� The case values must be constant in the sense that their value must be
known at compile time. (A statement such as case x is not legal unless
x is some type of constant.)

� Each clause must end in a break statement (or some other exit com-
mand that you haven’t seen yet, like return). The break statement
passes control out of the switch.

This rule has one exception: A single case clause may have more than one
case label, as in the following example:

string s = “Davis”;
switch(s)
{
case “Davis”:
case “Hvidsten”:

97Chapter 5: Controlling Program Flow

10_597043 ch05.qxd 9/20/05 1:51 PM Page 97

// do the same thing whether s is Davis or Hvidsten
// since they’re related
break;

case “Smith”:
// . . .do the married stuff . . .
break;

default:
// goes here if doesn’t pass any of the cases
break;

}

This approach enables the program to perform the same operation, whether
the input is Davis or Hvidsten.

The Lowly goto Statement
You can transfer control in an unstructured fashion by using the goto state-
ment. The goto statement is followed by one of these items:

� A label

� A case in a switch statement

� The keyword default, meaning the default clause of a switch statement

The idea of the latter two items is to jump from one case to another.

The following snippet demonstrates how the goto statement is used:

// if the condition is true . . .
if (a > b)
{
// . . .control passes unconditionally from the goto to the label
goto exitLabel;

}
// . . .whatever other code goes here . . .
exitLabel:
// control continues here

The goto statement is unpopular for the very reason that makes it such a
powerful control: It is almost completely unstructured. Tracking the flow of
control through anything larger than a trivial piece of code can be difficult if
you use goto. Can you say, “spaghetti code”?

Religious wars have sprung up over the use of the goto statement. In fact,
the C# language itself has been criticized for the very inclusion of the control.
Actually, goto is neither all that horrible nor necessary. Because you can
almost always avoid using goto, I recommend staying away from it.

98 Part II: Basic C# Programming

10_597043 ch05.qxd 9/20/05 1:51 PM Page 98

Part III
Object-Based
Programming

11_597043 pt03.qxd 9/20/05 1:51 PM Page 99

In this part . . .

It’s one thing to declare a variable here or there and
to add them and subtract them. It’s quite another

thing to write real programs that people can use —
simple people, but people nonetheless. In this part, you
discover how to group data and how to operate on that
data. You begin to think about programs as collections of
collaborating objects and start designing your own custom
objects. These skills form the basis of all programming
jobs you’ll find in the classifieds.

11_597043 pt03.qxd 9/20/05 1:51 PM Page 100

Chapter 6

Collecting Data — The Class
and the Array

In This Chapter
� Introducing the C# class

� Storing data in an object

� Assigning and using object references

� Creating and building arrays of objects

You can freely declare and use all the intrinsic data types — such as int,
double, and bool — to store the information necessary to make your

program the best that it can be. For some programs, these simple variables
are enough. However, most programs need a means to bundle related data in
a neat package.

Some programs need to bundle pieces of data that logically belong together
but aren’t of the same type. For example, a college enrollment application
handles students, each with his or her own name, rank (grade point average),
and serial number. Logically, the student’s name may be a string, the grade
point average could be a double, and the serial number a long. That type of
program needs some way to bundle these three different types of variables
into a single structure called Student. Fortunately, C# provides a structure
known as the class for accommodating groupings of unlike-typed variables.

In other cases, programs need to collect a series of like-typed objects. Take,
for example, a program designed to average grades. A double does a good
job of representing an individual grade. However, you need some type of col-
lection of double variables to contain all the many grades that students
collect during their careers. C# provides the array for just this purpose.

Finally, a real program to process student records would need to graduate
groups of students before they can set out on a life of riches and fame. This
type of program needs both the class and the array concept rolled into one:
arrays of students. Through the magic of C# programming, you can do this
as well.

12_597043 ch06.qxd 9/20/05 1:53 PM Page 101

Showing Some Class
A class is a bundling of unlike data and functions that logically belong together
into one tidy package. C# gives you the freedom to foul up your classes any
way you want, but good classes are designed to represent concepts.

Analysts say that “a class maps concepts from the problem into the pro-
gram.” For example, suppose your problem is to build a traffic simulator. This
traffic simulator is to model traffic patterns for the purpose of building
streets, intersections, and highways. (I would really like you to build a traffic
simulator that could fix the intersection in front of my house.)

Any description of a problem concerning traffic would include the term vehicle
in its solution. Vehicles have a top speed that must be figured into the equation.
They also have a weight, and some of them are clunkers. In addition, vehicles
stop and vehicles go. Thus, as a concept, vehicle is part of the problem domain.

A good C# traffic simulator program would necessarily include the class
Vehicle, which describes the relevant properties of a vehicle. The C#
Vehicle class would have properties like dTopSpeed, nWeight, and bClunker.
I address the stop and go parts in Chapters 7 and 8.

Because the class is so central to C# programming, the chapters in Part IV of
this book spelunk the ins and outs of classes in much more detail. This chap-
ter gets you started.

Defining a class
An example of the class Vehicle may appear as follows:

public class Vehicle
{
public string sModel; // name of the model
public string sManufacturer; // ditto
public int nNumOfDoors; // the number of doors on the vehicle
public int nNumOfWheels; // you get the idea

}

A class definition begins with the words public class, followed by the
name of the class — in this case, Vehicle.

Like all names in C#, the name of the class is case sensitive. C# doesn’t
enforce any rules concerning class names, but an unofficial rule holds that
the name of a class starts with a capital letter.

The class name is followed by a pair of open and closed braces. Within the
braces, you have zero or more members. The members of a class are variables
that make up the parts of the class. In this example, class Vehicle starts with

102 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 102

the member string sModel, which contains the name of the model of the
vehicle. Were this a car, the model name could be Trouper II. Hmm, have you
ever seen or heard of a Trouper I? The second member of this example
Vehicle class is the string sManufacturer. The final two properties are
the number of doors and the number of wheels on the vehicle.

As with any variable, make the names of the members as descriptive as possi-
ble. Although I’ve added comments to the data members, that really isn’t
necessary. The name of each variable says it all.

The public modifier in front of the class name makes the class universally
accessible throughout the program. Similarly, the public modifier in front of
the member names makes them accessible to everything else in the program.
Other modifiers are possible. Chapter 11 covers the topic of accessibility in
more detail.

The class definition should describe the properties of the object that are
salient to the problem at hand. That’s a little hard to do right now because
you don’t know what the problem is, but you can see where I’m headed here.

What’s the object?
Defining a Vehicle design is not the same thing as building a car. Someone
has to cut some sheet metal and turn some bolts before anyone can drive an
actual vehicle. A class object is declared in a similar but not identical fashion
to an intrinsic object.

The term object is used universally to mean a “thing.” Okay, that isn’t too
helpful. An int variable is an int object. A vehicle is a Vehicle object. You
are a reader object. I am an author . . . Okay, forget that last one.

The following code segment creates a car of class Vehicle:

Vehicle myCar;
myCar = new Vehicle();

The first line declares a variable myCar of type Vehicle, just like you can
declare a nSomethingOrOther of class int. (Yes, a class is a type, and all C#
objects are defined as classes.) The new Vehicle() command creates a spe-
cific object of type Vehicle and stores the location into the variable myCar.
The new has nothing to do with the age of myCar. My car could qualify for an
antique license plate if it weren’t so ugly. The new operator creates a new
block of memory in which your program can store the properties of myCar.

In C# terms, you say that myCar is an object of class Vehicle. You also say
that myCar is an instance of Vehicle. In this context, instance means “an
example of” or “one of.” You can also use the word instance as a verb, as in
instantiating a Vehicle. That’s what new does.

103Chapter 6: Collecting Data — The Class and the Array

12_597043 ch06.qxd 9/20/05 1:53 PM Page 103

Compare the declaration of myCar with that of an int variable called num:

int num;
num = 1;

The first line declares the variable num, and the second line assigns an
already-created constant of type int into the location of the variable num.

The intrinsic num and the object myCar are stored differently in memory.
The constant 1 does not occupy memory because both the CPU and the C#
compiler already know what a 1 is. Your CPU doesn’t have the concept of a
Vehicle. The new Vehicle expression allocates the memory necessary to
describe a vehicle to the CPU, to C#, to the world, and yes, to the universe!

Accessing the members of an object
Each object of class Vehicle has its own set of members. The following
expression stores the number 1 into the nNumberOfDoors member of the
object referenced by myCar:

myCar.nNumberOfDoors = 1;

Every C# operation must be evaluated by type as well as by value. The object
myCar is an object of type Vehicle. The variable Vehicle.nNumberOfDoors
is of type int (look again at the definition of the Vehicle class). The con-
stant 5 is also of type int, so the type of the variable on the right side of the
assignment operator matches the type of the variable on the left.

Similarly, the following code stores a reference to the strings describing the
model and manufacturer name of myCar:

myCar.sManufacturer = “BMW”; // don’t get your hopes up
myCar.sModel = “Isetta”; // the Urkle-mobile

(The Isetta was a small car built during the 1950s with a single door that
opened the entire front of the car.)

An example object-based program
The simple VehicleDataOnly program does the following:

� Defines the class Vehicle

� Creates an object myCar

� Assigns properties to myCar

� Retrieves those values out of the object for display

104 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 104

The code for the VehicleDataOnly program is as follows:

// VehicleDataOnly - create a Vehicle object, populate its
// members from the keyboard and then write it
// back out
using System;
namespace VehicleDataOnly
{
public class Vehicle
{
public string sModel; // name of the model
public string sManufacturer; // ditto
public int nNumOfDoors; // the number of doors on the vehicle
public int nNumOfWheels; // you get the idea

}
public class Program
{
// This is where the program starts
static void Main(string[] args)
{
// prompt user to enter her name
Console.WriteLine(“Enter the properties of your vehicle”);
// create an instance of Vehicle
Vehicle myCar = new Vehicle();
// populate a data member via a temporary variable
Console.Write(“Model name = “);
string s = Console.ReadLine();
myCar.sModel = s;
// or you can populate the data member directly
Console.Write(“Manufacturer name = “);
myCar.sManufacturer = Console.ReadLine();
// enter the remainder of the data
// a temp is useful for reading ints
Console.Write(“Number of doors = “);
s = Console.ReadLine();
myCar.nNumOfDoors = Convert.ToInt32(s);
Console.Write(“Number of wheels = “);
s = Console.ReadLine();
myCar.nNumOfWheels = Convert.ToInt32(s);
// now display the results
Console.WriteLine(“\nYour vehicle is a “);
Console.WriteLine(myCar.sManufacturer + “ “ + myCar.sModel);
Console.WriteLine(“with “ + myCar.nNumOfDoors + “ doors, “

+ “riding on “ + myCar.nNumOfWheels
+ “ wheels”);

// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The program listing begins with a definition of the Vehicle class.

105Chapter 6: Collecting Data — The Class and the Array

12_597043 ch06.qxd 9/20/05 1:53 PM Page 105

The definition of a class can appear either before or after class Program — it
doesn’t matter. However, you should adopt a style and stick with it. Bonus
Chapter 2 on the CD shows the more conventional technique of creating a
separate .cs file to contain each class, but just put the extra class in your
Program.cs file for now.

The program creates an object myCar of class Vehicle and then populates
each of the fields by reading the appropriate data from the keyboard. The
input data isn’t checked for legality. The program then spits out the informa-
tion just entered in a slightly different format.

The output from executing this program appears as follows:

Enter the properties of your vehicle
Model name = Metropolitan
Manufacturer name = Nash
Number of doors = 2
Number of wheels = 4

Your vehicle is a
Nash Metropolitan
with 2 doors, riding on 4 wheels
Press Enter to terminate...

The calls to Read() as opposed to ReadLine() leave the cursor right after
the output string. This makes the user’s input appear on the same line as the
prompt. In addition, adding the newline character ‘\n’ generates a blank line
without the need to execute WriteLine().

Discriminating between objects
Detroit car manufacturers can track each car that they make without getting
the cars confused. Similarly, a program can create numerous objects of the
same class, as follows:

Vehicle car1 = new Vehicle();
car1.sManufacturer = “Studebaker”;
car1.sModel = “Avanti”;
// the following has no effect on car1
Vehicle car2 = new Vehicle();
car2.sManufacturer = “Hudson”;
car2.sModel = “Hornet”;

Creating an object car2 and assigning it the manufacturer name Hudson has
no effect on the car1 Studebaker.

In part, the ability to discriminate between objects is the real power of the
class construct. The object associated with the Hudson Hornet can be cre-
ated, manipulated, and dispensed with as a single entity, separate from other
objects, including the Avanti. (These are both classic automobiles, especially
the latter.)

106 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 106

Can you give me references?
The dot operator and the assignment operator are the only two operators
defined on reference types, as follows:

// create a null reference
Vehicle yourCar;
// assign the reference a value
yourCar = new Vehicle();
// use dot to access a member
yourCar.sManufacturer = “Rambler”;
// create a new reference and point it to the same object
Vehicle yourSpousalCar = yourCar;

The first line creates an object yourCar without assigning it a value. A refer-
ence that has not been initialized is said to point to the null object. Any
attempt to use an uninitialized reference generates an immediate error that
terminates the program.

The C# compiler can catch most attempts to use an uninitialized reference and
generate a warning at build time. If you somehow slip one past the compiler,
accessing an uninitialized reference terminates the program immediately.

The second statement creates a new Vehicle object and assigns it to yourCar.
The last statement in this code snippet assigns the reference yourSpousalCar
to the reference yourCar. As shown in Figure 6-1, this has the effect of causing
yourSpousalCar to refer to the same object as yourCar.

The following two calls have the same effect:

// build your car
Vehicle yourCar = new Vehicle();
yourCar.sModel = “Kaiser”;
// it also belongs to your spouse
Vehicle yourSpousalCar = yourCar;
// changing one changes the other
yourSpousalCar.sModel = “Henry J”;
Console.WriteLine(“your car is a “ + yourCar.sModel);

yourCar

VehicleAssign value

yourSpousalCar "Rambler"

Figure 6-1:
The

relationship
between

two
references

to the same
object.

107Chapter 6: Collecting Data — The Class and the Array

12_597043 ch06.qxd 9/20/05 1:53 PM Page 107

Executing this program would output Henry J and not Kaiser. Notice that
yourSpousalCar does not point to yourCar; rather, both yourCar and
yourSpousalCar refer to the same vehicle.

In addition, the reference yourSpousalCar would still be valid, even if the
variable yourCar were somehow “lost” (went out of scope, for example), as
shown in the following code:

// build your car
Vehicle yourCar = new Vehicle();
yourCar.sModel = “Kaiser”;
// it also belongs to your spouse
Vehicle yourSpousalCar = yourCar;
// when she takes your car away . . .
yourCar = null; // yourCar now references the “null object”
// . . .yourSpousalCar still references the same vehicle
Console.WriteLine(“your car was a “ + yourSpousalCar.sModel);

Executing this program generates the output your car was a Kaiser, even
though the reference yourCar is no longer valid.

The object is no longer reachable from the reference yourCar. The object does
not become completely unreachable until both yourCar and yourSpousalCar
are “lost” or nulled out.

At that point — well, at some unpredictable later point, anyway — C#’s
garbage collector steps in and returns the space formerly used by that partic-
ular Vehicle object to the pool of space available for allocating more
Vehicles (or Students, for that matter). I say a little more about garbage
collection at the end of Chapter 12.

Classes that contain classes are the
happiest classes in the world
The members of a class can themselves be references to other classes. For
example, vehicles have motors, which have power and efficiency factors,
including displacement. (I suppose a bicycle doesn’t have a displacement.)
You could throw these factors directly into the class as follows:

public class Vehicle
{
public string sModel; // name of the model
public string sManufacturer; // ditto
public int nNumOfDoors; // the number of doors on the vehicle
public int nNumOfWheels; // you get the idea
public int nPower; // power of the motor [horsepower]
public double displacement; // engine displacement [liter]

}

108 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 108

However, power and engine displacement are not properties of the car. For
example, my son’s Jeep comes with two different motor options with drasti-
cally different horsepower. The 2.4-liter Jeep is a snail while the same car out-
fitted with the 4.0-liter engine is quite peppy.

The motor is a concept of its own and deserves its own class, as follows:

public class Motor
{
public int nPower; // power [horsepower]
public double displacement; // engine displacement [liter]

}

You can combine this class into the Vehicle as follows:

public class Vehicle
{
public string sModel; // name of the model
public string sManufacturer; // ditto
public int nNumOfDoors; // the number of doors on the vehicle
public int nNumOfWheels; // you get the idea
public Motor motor;

}

Creating myCar now appears as follows:

// first create a Motor
Motor largerMotor = new Motor();
largerMotor.nPower = 230;
largerMotor.displacement = 4.0;
// now create the car
Vehicle sonsCar = new Vehicle();
sonsCar.sModel = “Cherokee Sport”;
sonsCar.sManfacturer = “Jeep”;
sonsCar.nNumOfDoors = 2;
sonsCar.nNumOfWheels = 4;
// attach the motor to the car
sonsCar.motor = largerMotor;

From the Vehicle, you can access the motor displacement in two stages. You
can take one step at a time, as this code shows:

Motor m = sonsCar.motor;
Console.WriteLine(“The motor displacement is “ + m.displacement);

Or, you can access it directly, as shown here:

Console.Writeline(“The motor displacement is “ + sonsCar.motor.displacement);

Either way, you can only access the displacement through the Motor.

109Chapter 6: Collecting Data — The Class and the Array

12_597043 ch06.qxd 9/20/05 1:53 PM Page 109

This example is bundled in the simple program VehicleAndMotor on the
enclosed CD, not shown in full here.

Generating static in class members
Most data members of a class describe each object. Consider the Car class,
as follows:

public class Car
{
public string sLicensePlate; // the license plate ID

}

The license plate ID is an object property, meaning that it describes each
object of class Car uniquely. For example, thank goodness that my car has a
different license plate from yours; otherwise, you may not make it out of your
driveway, as shown in the following code:

Car cousinsCar = new Car();
cousinsCar.sLicensePlate = “XYZ123”;

Car yourCar = new Car();
yourCar.sLicensePlate = “ABC789”;

However, some properties exist that all cars share. For example, the number
of cars built is a property of the class Car but not of any one object. These
are called class properties and are flagged in C# with the keyword static, as
follows:

public class Car
{
public static int nNumberOfCars; // the number of cars built
public string sLicensePlate; // the license plate ID

}

Static members are not accessed through the object. Instead, you access
them via the class itself, as the following code snippet demonstrates:

// create a new object of class Car
Car newCar = new Car();
newCar.sLicensePlate = “ABC123”;
// now increment the count of cars to reflect the new one
Car.nNumberOfCars++;

The object member newCar.sLicensePlate is accessed through the object
newCar, while the class (static) member Car.nNumberOfCars is accessed
through the class Car. All Cars share the same nNumberOfCars member.

110 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 110

Defining const data members
One special type of static is the const data member, which represents a con-
stant. You must establish the value of a const variable in the declaration, and
you may not change it anywhere within the program, as shown in the follow-
ing code:

class Program
{
// number of days in the year (including leap day)
public const int nDaysInYear = 366;
public static void Main(string[] args)
{
// this is an array, covered later in this chapter
int[] nMaxTemperatures = new int[nDaysInYear];
for(int index = 0; index < nDaysInYear; index++)
{
// . . .accumulate the maximum temperature for each
// day of the year . . .

}
}

}

You can use the constant nDaysInYear in place of the value 366 anywhere
within your program. The const variable is useful because it can replace a
mysterious constant such as 366 with the descriptive name nDaysInYear to
enhance the readability of your program.

Actually, C# provides a second way to declare constants. You can preface a
variable declaration with the readonly modifier, like so:

public readonly int nDaysInYear = 366; // this could also be static

As with const, after you assign the initial value, it can’t be changed. Although
the reasons are too technical for this book, the readonly approach to declar-
ing constants is preferable to const.

An alternative convention also exists for naming constants. Instead of naming
them like variables (as in nDaysInYear), many programmers prefer to use
uppercase letters separated by underscores, as in DAYS_IN_YEAR. This con-
vention separates constants clearly from ordinary read-write variables.

The C# Array
Variables that contain single values are all well and good. Even class structures
that can describe compound objects like a vehicle are critical. But you also
need a construct for holding a set of objects, such as Bill Gates’s extensive

111Chapter 6: Collecting Data — The Class and the Array

12_597043 ch06.qxd 9/20/05 1:53 PM Page 111

collection of vintage cars. The built-in class Array is a structure that can con-
tain a series of elements of the same type (all int values, all double values,
and so on, or all Vehicle objects, Motor objects, and so on).

The argument for the array
Consider the problem of averaging a set of 10 floating point numbers. Each of
the 10 numbers requires its own double storage (averaging int variables
could result in rounding errors, as described in Chapter 3), as follows:

double d0 = 5;
double d1 = 2;
double d2 = 7;
double d3 = 3.5;
double d4 = 6.5;
double d5 = 8;
double d6 = 1;
double d7 = 9;
double d8 = 1;
double d9 = 3;

Now, you need to accumulate each of these values into a common sum,
which you then divide by 10 (the number of values):

double dSum = d0 + d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 + d9;
double dAverage = dSum / 10;

Listing each element by name is tedious. Okay, maybe it’s not so tedious
when you have only 10 numbers to average, but imagine averaging 100 or
even 1,000 floating point values.

The fixed-value array
Fortunately, you don’t need to name each element separately. C# provides
the array structure that can store a sequence of values. Using an array, you
can rewrite the preceding code segment as follows:

double[] dArray = {5, 2, 7, 3.5, 6.5, 8, 1, 9, 1, 3};

The Array class provides a special syntax that makes it more convenient to
use. The double brackets [] refer to the way you access individual elements
in the array, as follows:

dArray[0] corresponds to d0
dArray[1] corresponds to d1
. . .

112 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 112

The 0th element of the array corresponds to d0, the 1th element to d1, and so
on. It’s common to refer to the 0th element as “dArray sub-0,” the 1st ele-
ment as “dArray sub-1,” and so on.

The array’s element numbers — 0, 1, 2, . . . — are known as the index.

In C#, the array index starts at 0 and not at 1. Therefore, you typically don’t
refer to the element at index 1 as the first element but the “oneth element” or
the “element at index 1.” The first element is the zeroth element. If you insist
on using normal speech, just be aware that the first element is at index 0 and
the second element is at index 1.

dArray wouldn’t be much of an improvement were it not for the fact that the
index of the array can be a variable. Using a for loop is easier than writing
each element out by hand, as the following program demonstrates:

113Chapter 6: Collecting Data — The Class and the Array

Array bounds checking
The FixedArrayAverage program (see the
section “The fixed-value array” in this chapter)
loops through an array of 10 elements.
Fortunately, the loop iterates through all 10 ele-
ments. But what if you had made a mistake and
didn’t iterate through the loop properly? You
have the following two cases to consider:

What if you had only iterated through 9 ele-
ments? C# would not have considered this an
error. If you want to read 9 elements of a 10-
element array, who is C# to say any differently?
Of course, the average would be incorrect, but
the program wouldn’t know that.

What if you had iterated through 11 (or more)
elements? Now, C# cares a lot. C# does not
allow you to index beyond the end of an array,
for fear that you will overwrite some important
value in memory. To test this, change the com-
parison in the for loop to the following, replac-
ing the value 10 with 11 in the comparison:

for(int i = 0; i < 11; i++)

When you execute the program, you get a
dialog box with the following error message:

IndexOutOfRangeException was unhandled
Index was outside the bounds of the array.

At first glance, this error message seems
imposing. However, you can get the gist rather
quickly: An IndexOutOfRangeException
was reported. Clearly, C# is telling you that the
program tried to access an array beyond the
end of its range — accessing element 11 in a
10-element array. (Buried in the message
details — under StackTrace — is informa-
tion about the exact line from which the access
was made, but you haven’t progressed far
enough in the book to understand the entire
message completely.)

12_597043 ch06.qxd 9/20/05 1:53 PM Page 113

// FixedArrayAverage - average a fixed array of
// numbers using a loop
namespace FixedArrayAverage
{
using System;
public class Program
{
public static void Main(string[] args)
{
double[] dArray = {5, 2, 7, 3.5, 6.5, 8, 1, 9, 1, 3};
// accumulate the values in the array
// into the variable dSum
double dSum = 0;
for (int i = 0; i < 10; i++)
{
dSum = dSum + dArray[i];

}
// now calculate the average
double dAverage = dSum / 10;
Console.WriteLine(dAverage);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The program begins by initializing a variable dSum to 0. The program then
loops through the values stored in dArray, adding each one to dSum. By the
end of the loop, dSum has accumulated the sum of all the values in the array.
The resulting sum is divided by the number of elements to create the aver-
age. The output from executing this program is the expected 4.6. (You can
check it with your calculator.)

The variable-length array
The array used in the example program FixedArrayAverage suffers from the
following two serious problems:

� The size of the array is fixed at 10 elements.

� Worse yet, the value of those 10 elements is specified directly in the
program.

A program that could read in a variable number of values, perhaps deter-
mined by the user during execution, would be much more flexible. It would
work not only for the 10 values specified in FixedArrayAverage but also for
any other set of values.

114 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 114

The format for declaring a variable-sized array differs slightly from that of a
fixed-size, fixed-value array as follows:

double[] dArray = new double[N];

Here, N represents the number of elements to allocate.

The updated program VariableArrayAverage enables the user to specify
the number of values to enter. Because the program retains the values
entered, not only does it calculate the average, but it also displays the results
in a pleasant format, as shown here:

// VariableArrayAverage - average an array whose size is
// determined by the user at run time.
// Accumulating the values in an array
// allows them to be referenced as often
// as desired. In this case, the array
// creates an attractive output.
namespace VariableArrayAverage
{
using System;
public class Program
{
public static void Main(string[] args)
{
// first read in the number of doubles
// the user intends to enter
Console.Write(“Enter the number of values to average:”);
string sNumElements = Console.ReadLine();
int numElements = Convert.ToInt32(sNumElements);
Console.WriteLine();
// now declare an array of that size
double[] dArray = new double[numElements];
// accumulate the values into an array
for (int i = 0; i < numElements; i++)
{
// prompt the user for another double
Console.Write(“enter double #” + (i + 1) + “: “);
string sVal = Console.ReadLine();
double dValue = Convert.ToDouble(sVal);
// add this to the array
dArray[i] = dValue;

}
// accumulate ‘numElements’ values from
// the array in the variable dSum
double dSum = 0;
for (int i = 0; i < numElements; i++)
{
dSum = dSum + dArray[i];

}
// now calculate the average
double dAverage = dSum / numElements;

115Chapter 6: Collecting Data — The Class and the Array

12_597043 ch06.qxd 9/20/05 1:53 PM Page 115

// output the results in an attractive format
Console.WriteLine();
Console.Write(dAverage

+ “ is the average of (“
+ dArray[0]);

for (int i = 1; i < numElements; i++)
{
Console.Write(“ + “ + dArray[i]);

}
Console.WriteLine(“) / “ + numElements);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

Look at the following output of a sample run in which you enter five sequen-
tial values, 1 through 5, and the program calculates the average to be 3:

Enter the number of values to average:5

enter double #1: 1
enter double #2: 2
enter double #3: 3
enter double #4: 4
enter double #5: 5

3 is the average of (1 + 2 + 3 + 4 + 5) / 5
Press Enter to terminate...

The VariableArrayAverage program begins by prompting the user for the
number of values she intends to average. The result is stored in the int vari-
able numElements. In the example, the number entered is 5.

The program continues by allocating an array dArray with the specified
number of elements. In this case, the program allocates an array with five ele-
ments. The program loops the number of times specified by numElements,
reading a new value from the user each time.

After the user enters the values, the program applies the same algorithm used
in the FixedArrayAverage program to calculate the average of the sequence.

The final section generates the output of the average along with the numbers
entered in an attractive format (attractive to me — beauty is in the eye of the
beholder).

Getting console output just right is a little tricky. Follow each statement in
the FixedArrayAverage carefully as the program outputs open parentheses,
equal signs, plus signs, and each of the numbers in the sequence, and com-
pare this with the output.

116 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 116

The VariableArrayAverage program probably doesn’t completely satisfy
your thirst for flexibility. You don’t want to have to tell the program how
many numbers you want to average. What you’d really like is to enter num-
bers to average as long as you want — and then tell the program to average
what you’ve entered. In addition to the array, C# provides other types of col-
lections, some of which can grow and shrink as necessary; Chapter 15
describes these collections, which give you a powerful, flexible alternative to
arrays. Getting input directly from the user isn’t the only way to fill up your
array or other collection, either. Bonus Chapter 2 on the CD describes how to
read an arbitrary number of data items from a file.

The Length property
The for loop used to populate the array in the VariableArrayAverage pro-
gram begins as follows:

// now declare an array of that size
double[] dArray = new double[numElements];
// accumulate the values into an array
for (int i = 0; i < numElements; i++)
{
// prompt the user for another double
Console.Write(“enter double #” + (i + 1) + “: “);
string sVal = Console.ReadLine();
double dValue = Convert.ToDouble(sVal);
// add this to the array
dArray[i] = dValue;

}

The dArray is declared to be numElements in length. Thus, the clever pro-
grammer (me) used a for loop to iterate through numElements of the array.

It would be a shame and a crime to have to schlep the variable numElements
around with dArray everywhere it goes just so you know how long it is.
Fortunately, that isn’t necessary. An array has a property called Length that
contains its length. dArray.Length has the same value as numElements.

The following for loop would have been preferable:

// accumulate the values into an array
for (int i = 0; i < dArray.Length; i++) ...

Why do the formats of fixed- and variable-length
arrays differ so much?
On the surface, the syntax of fixed- and variable-length arrays look quite a bit
different, as follows:

double[] dFixedLengthArray = {5, 2, 7, 3.5, 6.5, 8, 1, 9, 1, 3};
double[] dVariableLengthArray = new double[10];

117Chapter 6: Collecting Data — The Class and the Array

12_597043 ch06.qxd 9/20/05 1:53 PM Page 117

The difference is that C# is trying to save you some work. C# allocates the
memory for you in the case of the fixed-length array dFixedLengthArray.
You could have done it yourself using the following code:

double[] dFixedLengthArray = new double[10] {5, 2, 7, 3.5, 6.5, 8, 1, 9, 1, 3};

Here, you have specifically allocated the memory using new and then fol-
lowed that declaration with the initial values for the members of the array.

Lining Up Arrays of Objects
Programmers often must deal with sets of user-defined objects (classes). For
example, a university needs some type of structure to describe the students
who are attending the fine institution of higher learning. Pfft!

A bare-bones Student class appears as follows:

public class Student
{
public string sName;
public double dGPA; // grade point average

}

This overly simple class contains nothing more than the student’s name and
grade point average.

The following line declares an array of num references to Student objects:

Student[] students = new Student[num];

new Student[num] does not declare an array of Student objects. This line
declares an array of references to Student objects.

So far, each element students[i] references the null object because C# ini-
tializes new, undefined objects with null. You can also say that none of the
elements in the array point to a Student object yet. First, you must populate
the array as follows:

for (int i = 0; i < students.Length; i++)
{

students[i] = new Student();
}

Now the program can enter the properties of the individual students as follows:

students[i] = new Student();
students[i].sName = “My Name”;
students[i].dGPA = dMyGPA;

118 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 118

You can see this wonder in the following AverageStudentGPA program,
which inputs information on a number of students and spits out the average
of their GPAs:

// AverageStudentGPA - calculate the average GPAs (grade point
// averages) of a number of students.
using System;
namespace AverageStudentGPA
{
public class Student
{
public string sName;
public double dGPA; // grade point average

}
public class Program
{
public static void Main(string[] args)
{
// find out how many students
Console.WriteLine(“Enter the number of students”);
string s = Console.ReadLine();
int nNumberOfStudents = Convert.ToInt32(s);
// allocate an array of Student objects
Student[] students = new Student[nNumberOfStudents];
// now populate the array
for (int i = 0; i < students.Length; i++)
{
// prompt the user for the name - add one to
// the index because people are 1-oriented while
// C# arrays are 0-oriented
Console.Write(“Enter the name of student “ + (i + 1) + “: “);
string sName = Console.ReadLine();
Console.Write(“Enter grade point average: “);
string sAvg = Console.ReadLine();
double dGPA = Convert.ToDouble(sAvg);
// create a Student from that data
Student thisStudent = new Student();
thisStudent.sName = sName;
thisStudent.dGPA = dGPA;
// add the student object to the array
students[i] = thisStudent;

}
// now average the students that you have
double dSum = 0.0;
for (int i = 0; i < students.Length; i++)
{
dSum += students[i].dGPA;

}
double dAvg = dSum / students.Length;
// output the average
Console.WriteLine();
Console.WriteLine(“The average of the “ + students.Length

+ “ students is “ + dAvg);

119Chapter 6: Collecting Data — The Class and the Array

12_597043 ch06.qxd 9/20/05 1:53 PM Page 119

// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The program prompts the user for the number of students to consider. It then
creates the properly sized array of references to Student objects.

The program now enters an initial for loop in which it populates the array.
The user is prompted for the name and GPA of each student in turn. This data
is used to create a Student object, which is promptly stuffed into the next
element in the array.

After all the Student references are snuggled fast in their beds, the program
enters a second loop. In this loop, the GPA of each student is read using the
statement students[i].GPA. The GPAs are rounded up, summed, and aver-
aged. The average is then output to the user.

Here’s the output from a typical run from this program:

Enter the number of students
3
Enter the name of student 1: Randy
Enter grade point average: 3.0
Enter the name of student 2: Jeff
Enter grade point average: 3.5
Enter the name of student 3: Carrie
Enter grade point average: 4.0

The average of the 3 students is 3.5
Press Enter to terminate...

The name of an object reference variable should always be singular, as in
student. The name of the variable should somehow include the name of the
class, as in badStudent or goodStudent or sexyCoedStudent. The name
of an array (or any other collection, for that matter) should be plural, as in
students or phoneNumbers or phoneNumbersInMyPalmPilot. As always,
this tip reflects the opinion of the authors and not this book’s publisher nor
any of its shareholders — C# doesn’t care how you name your variables.

A Flow Control Made foreach Array
Given an array of objects of class Student, the following loop averages their
grade point averages:

public class Student
{

120 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 120

public string sName;
public double dGPA; // grade point average

}
public class Program
{
public static void Main(string[] args)
{
// . . .create the array . . .
// now average the students that you have
double dSum = 0.0;
for (int i = 0; i < students.Length; i++)
{
dSum += students[i].dGPA;

}
double dAvg = dSum / students.Length;
// . . .do something with that array . . .

}
}

The for loop iterates through the members of the array.

students.Length contains the number of elements in the array.

C# provides yet another control, called the foreach statement, that is
designed specifically for iterating through containers such as the array. It
works as follows:

// now average the students that you have
double dSum = 0.0;
foreach (Student stud in students)
{
dSum += stud.dGPA;

}
double dAvg = dSum / students.Length;

The first time through the loop, the foreach fetches the first Student object
in the array and stores it in the variable stud. On each subsequent pass, the
foreach retrieves the next element. Control passes out of the foreach when
all the elements in the array have been processed.

Notice that no index appears in the foreach statement. This greatly reduces
the chance of error and is simpler to write.

Former C, C++, and Java programmers find the foreach a little uncomfortable
at first because it is unique to C# (well, .NET); however, the foreach sort of
grows on you. It is the easiest of all the looping commands for accessing arrays.

The foreach is actually more powerful than it would seem from this exam-
ple. This statement works on other collection types in addition to arrays.
(Chapter 15 and Bonus Chapter 3 discuss collections.) In addition, the exam-
ple foreach handles multidimensional arrays (arrays of arrays, in effect), a
topic beyond the scope of this book.

121Chapter 6: Collecting Data — The Class and the Array

12_597043 ch06.qxd 9/20/05 1:53 PM Page 121

Sorting through Arrays of Objects
A common programming challenge is the need to sort the elements within an
array. Just because an array cannot grow or shrink in size does not mean that
the elements within the array cannot be moved, removed, or added. For
example, the following code snippet swaps the location of two Student ele-
ments within the array students:

Student temp = students[i]; // save off the i’th student
students[i] = students[j];
students[j] = temp;

Here, the object reference in the ith location in the students array is saved
off so that it is not lost when the second statement replaces it with another
element. Finally, the temp variable is saved back into the jth location.
Pictorially, this looks like Figure 6-2.

Some data collections are more versatile than the array when it comes to
adding and removing elements. Chapter 15 gets you started with collections.

students[i] "Marge"

Before:

students[j] "Homer"

students[i] "Marge"

After:

students[j] "Homer"

Figure 6-2:
“Swapping

two
objects”
actually

means
“swapping
references

to two
objects.”

122 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 122

The following program demonstrates how to use the ability to manipulate ele-
ments within an array as part of a sort. This particular sorting algorithm is
called the bubble sort. It’s not so great on large arrays with thousands of
entries, but it’s simple and effective on small arrays:

// SortStudents - this program demonstrates how to sort
// an array of objects
using System;
namespace SortStudents
{
class Program
{
public static void Main(string[] args)
{
// create an array of students
Student[] students = new Student[5];
students[0] = Student.NewStudent(“Homer”, 0);
students[1] = Student.NewStudent(“Lisa”, 4.0);
students[2] = Student.NewStudent(“Bart”, 2.0);
students[3] = Student.NewStudent(“Marge”, 3.0);
students[4] = Student.NewStudent(“Maggie”, 3.5);
// output the list as is:
Console.WriteLine(“Before sorting:”);
OutputStudentArray(students);
// now sort the list of students by grade (best
// grade first)
Console.WriteLine(“\nSorting the list\n”);
Student.Sort(students);
// display the resulting list
Console.WriteLine(“The students sorted by grade:”);
OutputStudentArray(students);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// OutputStudentArray - display all the students in the array
public static void OutputStudentArray(Student[] students)
{
foreach(Student s in students)
{
Console.WriteLine(s.GetString());

}
}

}
// Student - description of a student with name and grade
class Student
{
public string sName;
public double dGrade = 0.0;
// NewStudent - return a new and initialized student object
public static Student NewStudent(string sName, double dGrade)
{
Student student = new Student();

123Chapter 6: Collecting Data — The Class and the Array

12_597043 ch06.qxd 9/20/05 1:53 PM Page 123

student.sName = sName;
student.dGrade = dGrade;
return student;

}
// GetString - convert the current Student object into
// a string
public string GetString()
{
string s = “”;
s += dGrade;
s += “ - “;
s += sName;
return s;

}
// Sort - sort an array of students in decreasing order
// of grade - use the bubble sort algorithm
public static void Sort(Student[] students)
{
bool bRepeatLoop;
// keep looping until the list is sorted
do
{
// this flag is reset to true if an object is found
// out of order
bRepeatLoop = false;
// loop through the list of students
for(int index = 0; index < (students.Length - 1); index++)
{
// if two of the students are in the wrong order . . .
if (students[index].dGrade <

students[index + 1].dGrade)
{
// . . .then swap them . . .
Student to = students[index];
Student from = students[index + 1];
students[index] = from;
students[index + 1] = to;
// . . .and flag the fact that you’ll need to make
// another pass through the list of students
// (keep iterating through the loop checking
// until all the objects are in order)
bRepeatLoop = true;

}
}

} while (bRepeatLoop);
}

}
}

I start by examining the output of the program, just to convince myself that it
works:

124 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 124

Before sorting:
0 - Homer
4 - Lisa
2 - Bart
3 - Marge
3.5 - Maggie

Sorting the list

The students sorted by grade:
4 - Lisa
3.5 - Maggie
3 - Marge
2 - Bart
0 - Homer
Press Enter to terminate...

In the interest of saving time, both yours and mine, I hard-coded the program
to create five students. The NewStudent() method allocates a new Student
object, initializes its name and grade, and returns the result. Homer gets his
usual failing grade, while Lisa makes her A+. The program uses the
OutputStudentArray() function to display the elements in the student
array before it is sorted.

The program then invokes the Sort() function. After sorting, the program
repeats the output process just to amaze you with the now-sorted result.

Of course, the key novelty to the SortStudents program is the Sort()
method. This algorithm works by continuously looping through the list of
students until the list is sorted. On each pass through the students array,
the program compares each student to its neighbor. If the two are found to be
out of order, the function swaps them and then flags the fact that the list was
not found to be completely sorted. Figures 6-3 through 6-6 show the student
list after each pass.

Homer 0
Lisa 4
Bart 2
Marge 3
Maggie 3.5

Figure 6-3:
Before

starting the
bubble sort.

125Chapter 6: Collecting Data — The Class and the Array

12_597043 ch06.qxd 9/20/05 1:53 PM Page 125

Eventually, the best students, such as Lisa and Maggie, “bubble” their way to
the top, while the worst students, like Homer, fall to the bottom as usual.
Hence the name bubble sort.

The key to this or any other sort function is that the elements within the
array can be reordered by assigning the reference value of one element in the
array to that of another. Note that this assignment of references does not
make a copy of the object and is, hence, a very quick operation.

Lisa 4
Maggie 3.5
Marge 3
Bart 2
Homer 0

Swapping Maggie and Marge

Figure 6-6:
The next-to-

last pass
results in a
sorted list.

The final
pass

terminates
the sort

because
nothing

changes.

Lisa 4
Marge 3
Maggie 3.5
Bart 2
Homer 0

Bart drops down, too, but not below Homer.

Lisa stays at the top.

Figure 6-5:
After pass 2

of the
bubble sort.

Lisa 4
Bart 2
Marge 3
Maggie 3.5
Homer 0 Homer works his way to the bottom.

Figure 6-4:
After pass 1

of the
bubble sort.

126 Part III: Object-Based Programming

12_597043 ch06.qxd 9/20/05 1:53 PM Page 126

Chapter 7

Putting on Some High-Class
Functions

In This Chapter
� Defining a function

� Passing arguments to a function

� Getting results back — that would be nice

� Reviewing the WriteLine() example

� Passing arguments to the program

Programmers need the ability to break large programs into smaller chunks
that are easier to handle. For example, the programs contained in previ-

ous chapters are reaching the limit of what a person can digest at one time.

C# lets you divide your code into chunks known as functions. Properly
designed and implemented functions can greatly simplify the job of writing
complex programs.

Defining and Using a Function
Consider the following example:

class Example
{
public int nInt; // non-static
public static int nStaticInt // static
public void MemberFunction() // non-static
{
Console.WriteLine(“this is a member function”);

}
public static void ClassFunction() // static
{
Console.WriteLine(“this is a class function”);

}
}

13_597043 ch07.qxd 9/20/05 1:55 PM Page 127

The element nInt is a data member, just like those shown in Chapter 6.
However, the element MemberFunction() is new. MemberFunction() is
known as a member function, which is a set of C# code that you can execute
by referencing the function’s name. This is best explained by example — even
I’m confused right now. (Actually, you’ve been seeing functions all along,
starting with Main().)

Note: The distinction between static and non-static class members is impor-
tant. I cover part of that story in this chapter and continue in more detail in
Chapter 8, where I also introduce the term method, which is commonly used
in object-oriented languages like C# for non-static class functions.

The following code snippet assigns a value to the object data member nInt
and the class, or static, member nStaticInt:

Example example = new Example(); // create an object
example.nInt = 1; // initialize the data member through object
Example.nStaticInt = 2; // initialize class member through class

The following snippet defines and accesses MemberFunction() and
ClassFunction() in almost the same way:

Example example = new Example(); // create an object
example.MemberFunction(); // invoke the member function

// with that object
Example.ClassFunction(); // invoke the class function with the class
// the following lines won’t compile
example.ClassFunction(); // can’t access class functions via an object
Example.MemberFunction(); // can’t access member functions via class

The distinction between a class (static) function and a member (nonstatic)
function, or method, mirrors the distinction between a class (static) variable
and a member (nonstatic) variable that I describe in Chapter 6.

The expression example.MemberFunction() passes control to the code
contained within the function. C# follows an almost identical process for
Example.ClassFunction(). Executing this simple code snippet generates
the output from the WriteLine() contained within each function, as follows:

this is a member function
this is a class function

After a function completes execution, it returns control to the point where it
was called.

I include the parentheses when describing functions in text — as in Main() —
to make them a little easier to recognize. Otherwise, I get confused trying to
understand what I’m saying.

128 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:55 PM Page 128

The bit of C# code within the two example functions does nothing more than
write a silly string to the console, but functions generally perform useful
and sometimes complex operations like calculating the sine of something,
concatenating two strings, sorting an array of students, or surreptitiously
e-mailing your URL to Microsoft. A function can be as large and complex as
you want it to be, but it’s best to strive for shorter functions, using the
approach described in the next section.

An Example Function for Your Files
In this section, I take the monolithic CalculateInterestTable programs
from Chapter 5 and divide them into several reasonable functions as a
demonstration of how the proper definition of functions can help make the
program easier to write and understand. The process of dividing up working
code this way is known as refactoring, and Visual Studio 2005 provides a
handy Refactor menu that automates the most common refactorings.

I explain the exact details of the function definitions and function calls in
later sections of this chapter. This example simply gives an overview.

By reading the comments with the actual C# code removed, you should be
able to get a good idea of a program’s intention. If you cannot, you aren’t
commenting properly. (Conversely, if you can’t strip out most comments and
still understand the intention from the function names, you aren’t naming
your functions clearly enough and/or making them small enough.)

In outline form, the CalculateInterestTable program appears as follows:

public static void Main(string[] args)
{
// prompt user to enter source principal
// if the principal is negative, generate an error message

// prompt user to enter the interest rate
// if the interest is negative, generate an error message
// finally, prompt user to input the number of years
// display the input back to the user
// now loop through the specified number of years
while(nYear <= nDuration)
{
// calculate the value of the principal plus interest

// output the result
}

}

129Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:55 PM Page 129

This illustrates a good technique for planning a function. If you stand back
and study the program from a distance, you can see that it is divided into the
following three sections:

� An initial input section in which the user inputs the principal, interest,
and duration information

� A section that mirrors the input data so that the user can verify that the
correct data was entered

� A final section that creates and outputs the table

These are good places to start looking for ways to refactor the program. In
fact, if you further examine the input section of that program, you can see
that the same basic code is used to input the following:

� The principal

� The interest

� The duration

That observation gives you another good place to look.

I have used this information to create the following
CalculateInterestTableWithFunctions program:

// CalculateInterestTableWithFunctions - generate an interest table
// much like the other interest table
// programs, but this time using a
// reasonable division of labor among
// several functions.
using System;
namespace CalculateInterestTableWithFunctions
{
public class Program
{
public static void Main(string[] args)
{
// Section 1 - input the data you will need to create the table
decimal mPrincipal = 0;
decimal mInterest = 0;
decimal mDuration = 0;
InputInterestData(ref mPrincipal,

ref mInterest,
ref mDuration);

// Section 2 - verify the data by mirroring it back to the user
Console.WriteLine(); // skip a line
Console.WriteLine(“Principal = “ + mPrincipal);
Console.WriteLine(“Interest = “ + mInterest + “%”);
Console.WriteLine(“Duration = “ + mDuration + “ years”);
Console.WriteLine();
// Section 3 - finally, output the interest table

130 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:55 PM Page 130

OutputInterestTable(mPrincipal, mInterest, mDuration);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// InputInterestData - retrieve from the keyboard the
// principal, interest, and duration
// information needed to create the
// future value table
// (This function implements Section 1 by breaking it down into
// its three components)
public static void InputInterestData(ref decimal mPrincipal,

ref decimal mInterest,
ref decimal mDuration)

{
// 1a - retrieve the principal
mPrincipal = InputPositiveDecimal(“principal”);
// 1b - now enter the interest rate
mInterest = InputPositiveDecimal(“interest”);
// 1c - finally, the duration
mDuration = InputPositiveDecimal(“duration”);

}
// InputPositiveDecimal - return a positive decimal number from
// the keyboard.
// (Inputting any one of principal, interest rate, or duration
// is just a matter of inputting a decimal number and making
// sure that it’s positive)
public static decimal InputPositiveDecimal(string sPrompt)
{
// keep trying until the user gets it right
while(true)
{
// prompt the user for input
Console.Write(“Enter “ + sPrompt + “:”);
// retrieve a decimal value from the keyboard
string sInput = Console.ReadLine();
decimal mValue = Convert.ToDecimal(sInput);
// exit the loop if the value entered is correct
if (mValue >= 0)
{
// return the valid decimal value entered by the user
return mValue;

}
// otherwise, generate an error on incorrect input
Console.WriteLine(sPrompt + “ cannot be negative”);
Console.WriteLine(“Try again”);
Console.WriteLine();

}
}
// OutputInterestTable - given the principal and interest
// generate a future value table for
// the number of periods indicated in
// mDuration.

131Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:55 PM Page 131

// (this implements section 3 of the program)
public static void OutputInterestTable(decimal mPrincipal,

decimal mInterest,
decimal mDuration)

{
for (int nYear = 1; nYear <= mDuration; nYear++)
{
// calculate the value of the principal
// plus interest
decimal mInterestPaid;
mInterestPaid = mPrincipal * (mInterest / 100);
// now calculate the new principal by adding
// the interest to the previous principal
mPrincipal = mPrincipal + mInterestPaid;
// round off the principal to the nearest cent
mPrincipal = decimal.Round(mPrincipal, 2);
// output the result
Console.WriteLine(nYear + “-” + mPrincipal);

}
}

}
}

I have divided the Main() section into three clearly distinguishable parts,
each marked with bolded comments. I further divide the first section into 1a,
1b, and 1c.

Normally, you wouldn’t include the bolded comments. The listings would get
rather complicated with all the numbers and letters if you did. In practice,
those types of comments aren’t necessary if the functions are well thought
out and their names clearly express the intent of each.

Part 1 calls the function InputInterestData() to input the three variables
the program needs to create the table: mPrincipal, mInterest, and
mDuration. Part 2 displays these three values just as the earlier versions of
the program do. The final part outputs the table via the function
OutputInterestTable().

Starting at the bottom and working up, the OutputInterestTable() func-
tion contains an output loop with the interest rate calculations. This is the
same loop used in the in-line, nonfunction CalculateInterestTable pro-
gram in Chapter 5. The advantage of this version, however, is that when writ-
ing this section of code, you don’t need to concern yourself with any of the
details of inputting or verifying the data. In writing this function, you need to
think, “Given the three numbers — principal, interest, and duration — output
an interest table,” and that’s it. After you’re done, you can return to the line
that called the OutputInterestTable() function and continue from there.

132 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:55 PM Page 132

OutputInterestTable() offers a good try-out of Visual Studio 2005’s new
Refactor menu. Take these steps to give it a whirl:

1. Using the CalculateInterestTableMoreForgiving example from
Chapter 5 as a starting point, select the code from the declaration of
the nYear variable through the end of the while loop:

int nYear = 0; // you grab the loop variable
while(nYear <= nDuration) // and the entire while loop
{
//...

}

2. Choose Refactor➪Extract Method.

3. In the Extract Method dialog box, type OutputInterestTable. Examine
the Preview Method Signature box and then click OK.

Notice that the proposed “signature” for the new “method” begins with
the private static keywords and includes mPrincipal, mInterest,
and nDuration in the parentheses. I introduce private, an alternative
to public, in Chapter 11. For now, you can make the function public if
you like. The rest is coming up.

The result of this refactoring consists of the following two pieces:

� A new private static function below Main(), called
OutputInterestTable()

� The following line of code within Main() where the extracted code was:

mPrincipal = OutputInterestTable(mPrincipal, mInterest, nDuration);

Pretty cool! The same divide-and-conquer logic holds for InputInterest
Data(). However, the refactoring is more complex, so I do it by hand and
don’t show the steps. The full art of refactoring is beyond the scope of this
book.

For InputInterestData(), you can focus solely on inputting the three deci-
mal values. However, in this case, you realize that inputting each decimal
involves identical operations on three different input variables. The
InputPositiveDecimal() function bundles these operations into a set of
general code that you can apply to principal, interest, and duration alike.
Notice that the three while loops that take input in the original program get
collapsed into one while loop inside InputPositiveDecimal(). This
reduces code duplication, always a bad thing.

Making these kinds of changes to a program — making it clearer without
changing its observable behavior — is called refactoring. Check out
www.refactoring.com for tons of information about this technique.

133Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:55 PM Page 133

This InputPositiveDecimal() function displays the prompt it was given
and awaits input from the user. The function returns the value to the caller if
it is not negative. If the value is negative, the function outputs an error mes-
sage and loops back to try again.

From the user’s standpoint, the modified program acts exactly the same as
the in-line version in Chapter 5, which is just the point:

Enter principal:100
Enter interest:-10
interest cannot be negative
Try again

Enter interest:10
Enter duration:10

Principal = 100
Interest = 10%
Duration = 10 years

1-110.0
2-121.00
3-133.10
4-146.41
5-161.05
6-177.16
7-194.88
8-214.37
9-235.81
10-259.39
Press Enter to terminate...

I have taken a lengthy, somewhat difficult program and refactored it into
smaller, more understandable pieces while reducing some duplication. As we
say in Texas, “You can’t beat that with a stick.”

134 Part III: Object-Based Programming

Why bother with functions?
When Fortran introduced the function concept
during the 1950s, the sole purpose was to avoid
duplication of code by combining similar sec-
tions into a common element. Suppose you
were to write a program that needed to calcu-
late and display ratios in multiple places. Your
program could call the DisplayRatio()
function when needed, more or less for the sole
purpose of avoiding duplicating code. The sav-
ings may not seem so important for a function

as small as DisplayRatio(), but functions
can grow to be much larger. Besides, a common
function like WriteLine() may be invoked in
hundreds of different places.

Quickly, a second advantage became obvious:
It is easier to code a single function correctly —
and doubly easier if the function is small. The
DisplayRatio() function includes a check
to make sure that the denominator is not zero. If

13_597043 ch07.qxd 9/20/05 1:55 PM Page 134

Having Arguments with Functions
A method such as the following example is about as useful as my hairbrush
because no data passes into or out of the function:

public static void Output()
{
Console.WriteLine(“this is a function”);

}

Compare this example to real-world functions that actually do something. For
example, the sine operation requires some type of input — after all, you have
to take the sine of something. Similarly, to concatenate two strings into one,
you need two strings. So, the Concatenate() function requires at least two
strings as input. “Gee, Wally, that sounds logical.” You need some way to get
data into and out of a function.

135Chapter 7: Putting on Some High-Class Functions

you repeat the calculation code throughout
your program, you could easily remember this
test in some cases, and in other places forget.

Not so obvious is a third advantage: A carefully
crafted function reduces the complexity of the
program. A well-defined function should stand
for some concept. You should be able to
describe the purpose of the function without
using the words and or or. The function should
do one thing.

A function like calculateSin() is an ideal
example. The programmer who has been
tasked with this assignment can implement this
complex operation without worrying about how
it may be used. The applications programmer
can use calculateSin() without worrying
about how this operation is performed inter-
nally. This greatly reduces the number of things
that the applications programmer has to worry
about. By reducing the number of “variables,” a
large job gets accomplished by implementing
two smaller, easier jobs.

Large programs such as a word processor are
built up from many layers of functions at ever-
increasing levels of abstraction. For example, a
RedisplayDocument() function would
undoubtedly call a Reparagraph() function
to redisplay the paragraphs within the docu-
ment. Reparagraph() would need to invoke
a CalculateWordWrap() function to decide
where to wrap the lines that make up the para-
graph. CalculateWordWrap() would have
to call a LookUpWordBreak() function to
decide where to break a word at the end of the
line, to make the sentences wrap more natu-
rally. Each of these functions was described in
a single, simple sentence. (Notice, also, how
well-named these functions are.)

Without the ability to abstract complex con-
cepts, writing programs of even moderate com-
plexity would become almost impossible, much
less creating an operating system such as
Windows XP, a utility such as WinZip, a word
processor like WordPerfect, or a game such as
Halo, to name a few examples.

13_597043 ch07.qxd 9/20/05 1:55 PM Page 135

Passing an argument to a function
The values input to a function are called the function arguments. (Another
name for argument is parameter.) Most functions require some type of argu-
ments if they’re going to do something. In this way, functions remind me of
my son: We need to have an argument before he’ll do anything. You pass
arguments to a function by listing them in the parentheses that follow the
function name. Consider the following small addition to the earlier Example
class:

public class Example
{
public static void Output(string funcString)
{
Console.WriteLine(“Output() was passed the argument: “

+ funcString);
}

}

I could invoke this function from within the same class as follows:

Output(“Hello”);

I would get the following not-too-exciting output:

Output() was passed the argument: Hello

The program passes a reference to the string “Hello” to the function
Output(). The function receives the reference and assigns it the name
funcString. The Output() function can use funcString within the function
just as it would any other string variable.

I can change the example in one minor way:

string myString = “Hello”;
Output(myString);

This code snippet assigns the variable myString to reference the string
“Hello”. The call Output(myString) passes the object referenced by
myString, which is your good old friend “Hello”. Figure 7-1 depicts this
process. From there, the effect is the same as before.

Passing multiple arguments to functions
When I ask my daughter to wash the car, she usually gives me more than just
a single argument. Because she has lots of time on the couch to think about
it, she can keep several at the ready.

136 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:55 PM Page 136

You can define a function with multiple arguments of varying types. Consider
the following example function AverageAndDisplay():

// AverageAndDisplay
using System;
namespace Example
{
public class Program
{
public static void Main(string[] args)
{
// access the member function
AverageAndDisplay(“grade 1”, 3.5, “grade 2”, 4.0);
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// AverageAndDisplay - average two numbers with their
// labels and display the results
public static void AverageAndDisplay(string s1, double d1,

string s2, double d2)
{
double dAverage = (d1 + d2) / 2;
Console.WriteLine(“The average of “ + s1

+ “ whose value is “ + d1
+ “ and “ + s2
+ “ whose value is “ + d2
+ “ is “ + dAverage);

}
}

}

Executing this simple program generates the following output:

The average of grade 1 whose value is 3.5 and grade 2 whose value is 4 is 3.75
Press Enter to terminate...

upperString
"Hello"

Output (funcString)

Figure 7-1:
The call
Output

(my
String)
copies the

value of
myString

to func
String.

137Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:55 PM Page 137

The function AverageAndDisplay() is declared with several arguments in
the order in which they are to be passed.

As usual, execution of the example program begins with the first statement
after Main(). The first noncomment line in Main() invokes the function
AverageAndDisplay(), passing the two strings “grade 1” and “grade 2”
and the two double values 3.5 and 4.0.

The function AverageAndDisplay() calculates the average of the two
double values, d1 and d2, passed to it along with their names contained in
s1 and s2, and the calculated average is stored in dAverage.

Changing the value of an argument inside the function can lead to errors. It’s
wiser to assign the argument to a temporary variable and modify that.

Matching argument definitions with usage
Each argument in a function call must match the function definition in both
type and order. The following is illegal and generates a build-time error:

// AverageWithCompilerError - this version does not compile!
using System;
namespace AverageWithCompilerError
{
public class Program
{
public static void Main(string[] args)
{
Console.WriteLine(“This program will not compile as-is.”);
// access the member function
AverageAndDisplay(“grade 1”, “grade 2”, 3.5, 4.0);
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// AverageAndDisplay - average two numbers with their
// labels and display the results
public static void AverageAndDisplay(string s1, double d1,

string s2, double d2)
{
double dAverage = (d1 + d2) / 2;
Console.WriteLine(“The average of “ + s1

+ “ whose value is “ + d1
+ “ and “ + s2
+ “ whose value is “ + d2
+ “ is “ + dAverage);

}
}

}

138 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:55 PM Page 138

C# can’t match the type of each argument in the call to AverageAndDisplay()
with the corresponding argument in the function definition. The string
“grade 1” matches the first string in the function definition; however, the
function definition calls for a double as its second argument rather than the
string that’s passed.

You can easily see that I simply transposed the second and third arguments.
That’s what I hate about computers — they take me too literally. I know what
I said, but it’s obvious what I meant!

To fix the problem, swap the second and third arguments.

Overloading a function does not
mean giving it too much to do
You can give two functions within a given class the same name as long as
their arguments differ. This is called overloading the function name.

The following example demonstrates overloading:

// AverageAndDisplayOverloaded - this version demonstrates that
// the average and display function
// can be overloaded
using System;
namespace AverageAndDisplayOverloaded
{
public class Program
{
public static void Main(string[] args)
{
// access the first member function
AverageAndDisplay(“my GPA”, 3.5, “your GPA”, 4.0);
Console.WriteLine();
// access the second member function
AverageAndDisplay(3.5, 4.0);
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// AverageAndDisplay - average two numbers with their
// labels and display the results
public static void AverageAndDisplay(string s1, double d1,

string s2, double d2)
{
double dAverage = (d1 + d2) / 2;
Console.WriteLine(“The average of “ + s1

+ “ whose value is “ + d1);
Console.WriteLine(“and “ + s2

+ “ whose value is “ + d2

139Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:55 PM Page 139

+ “ is “ + dAverage);
}
public static void AverageAndDisplay(double d1, double d2)
{
double dAverage = (d1 + d2) / 2;
Console.WriteLine(“The average of “ + d1

+ “ and “ + d2
+ “ is “ + dAverage);

}
}

}

This program defines two versions of AverageAndDisplay(). The program
invokes one and then the other by passing the proper arguments. C# can tell
which function the program wants by comparing the call with the definition.
The program compiles properly and generates the following output when
executed:

The average of my GPA whose value is 3.5
and your GPA whose value is 4 is 3.75

The average of 3.5 and 4 is 3.75
Press Enter to terminate..

In general, C# does not allow two functions in the same program to have the
same name. After all, how could C# tell which function you intended to call?
However, C# includes the number and type of the function’s arguments as part
of its name. Normally, you may call a function AverageAndDisplay(). However,
C# differentiates between the two functions AverageAndDisplay(string,
double, string, double) and AverageAndDisplay(double, double).
When you say it that way, it’s clear that the two functions are different.

Implementing default arguments
Often, you want to supply two (or more) versions of a function, as follows:

� One version would be the complicated version that provides complete
flexibility but requires numerous arguments from the calling routine,
several of which the user may not even understand.

In practice, references to the “user” of a function often mean the pro-
grammer who is making use of the function. User does not always refer
to the ultimate user of the program. Another term for this kind of user
is client. (Often the client is you.)

� A second version of the function would provide acceptable, if
somewhat bland, performance by assuming default values for some
of the arguments.

140 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:55 PM Page 140

You can easily implement default arguments using function overloading.

Consider the following pair of DisplayRoundedDecimal() functions:

// FunctionsWithDefaultArguments - provide variations of the same
// function, some with default arguments, by
// overloading the function name
using System;
namespace FunctionsWithDefaultArguments
{
public class Program
{
public static void Main(string[] args)
{
// access the member function
Console.WriteLine(“{0}”, DisplayRoundedDecimal(12.345678M, 3));
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// DisplayRoundedDecimal - convert a decimal value into a string
// with the specified number of significant
// digits
public static string DisplayRoundedDecimal(decimal mValue,

int nNumberOfSignificantDigits)
{
// first round the number off to the specified number
// of significant digits
decimal mRoundedValue =

decimal.Round(mValue,
nNumberOfSignificantDigits);

// convert that to a string
string s = Convert.ToString(mRoundedValue);
return s;

}
public static string DisplayRoundedDecimal(decimal mValue)
{
// invoke DisplayRoundedDecimal(decimal, int) specifying
// the default number of digits
string s = DisplayRoundedDecimal(mValue, 2);
return s;

}
}

}

The DisplayRoundedDecimal(decimal, int) function converts the
decimal value provided into a string with the specified number of digits
after the decimal point. Because decimals are often used to display monetary
values, the most common choice is two digits after the decimal point. Therefore,
the DisplayRoundedDecimal(decimal) function provides the same conver-
sion service but defaults the number of significant digits to two, thereby saving
the user from even worrying about the meaning of the second argument.

141Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:55 PM Page 141

Notice that the generic (decimal) version of the function actually calls the
more specific (decimal, int) version to perform its magic. This is more
common than not, because it reduces duplication. The generic functions
simply provide arguments that the programmer doesn’t have the inclination
to look up in the documentation.

Providing default arguments is more than just saving a lazy programmer a
tiny bit of effort. Programming requires lots of concentration. Unnecessary
trips to the reference documentation to look up the meaning of normally
defaulted arguments distract the programmer from the main job at hand,
thereby making the job more difficult, wasting time, and increasing the likeli-
hood of mistakes. The author of the function understands the relationship
between the arguments and therefore bears the onus of providing friendlier,
overloaded versions of functions.

Visual Basic and C/C++ programmers take note: In C#, overloaded functions
are the only way to implement default arguments. C# also doesn’t allow
optional arguments.

Passing value-type arguments
The basic variable types such as int, double, and decimal are known as
value-type variables. You can pass value-type variables to a function in one of
two ways. The default form is to pass by value. An alternate form is the pass
by reference.

Programmers can get sloppy in their speech. In referring to value-types, when
a programmer says “passing a variable to a function,” that usually means
“pass the value of a variable to a function.”

Passing value-type arguments by value
Unlike object references, value-type variables like an int or a double are nor-
mally passed by value, which means that the value contained within the vari-
able is passed to the function and not the variable itself.

Pass by value has the effect that changing the value of a value-type variable
within a function does not change the value of that variable in the calling pro-
gram. This is demonstrated in the following code:

// PassByValue - demonstrate pass by value semantics
using System;
namespace PassByValue
{
public class Program
{
// Update - try to modify the values of the arguments
// passed to it; note that you can declare

142 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:55 PM Page 142

// functions in any order in a class
public static void Update(int i, double d)
{
i = 10;
d = 20.0;

}
public static void Main(string[] args)
{
// declare two variables and initialize them
int i = 1;
double d = 2.0;
Console.WriteLine(“Before the call to Update(int, double):”);
Console.WriteLine(“i = “ + i + “, d = “ + d);
// invoke the function
Update(i, d);
// notice that the values 1 and 2.0 have not changed
Console.WriteLine(“After the call to Update(int, double):”);
Console.WriteLine(“i = “ + i + “, d = “ + d);
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

Executing this program generates the following output:

Before the call to Update(int, double):
i = 1, d = 2
After the call to Update(int, double):
i = 1, d = 2
Press Enter to terminate...

The call to Update() passes the values 1 and 2.0 and not a reference to the
variables i and d. Thus, changing their value within the function has no more
effect on the value of the variables back in the calling routine than asking for
water with ice at an English pub.

Passing value-type arguments by reference
Passing a value-type argument to a function by reference is advantageous —
in particular, when the caller wants to give the function the ability to change
the value of the variable. The following PassByReference program demon-
strates this capability.

C# gives the programmer the pass by reference capability via the ref and
out keywords. The following slight modification to the example PassByValue
program snippet from the previous section demonstrates the point:

143Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:55 PM Page 143

// PassByReference - demonstrate pass by reference semantics
using System;
namespace PassByReference
{
public class Program
{
// Update - try to modify the values of the arguments
// passed to it; note ref and out arguments
public static void Update(ref int i, out double d)
{
i = 10;
d = 20.0;

}
public static void Main(string[] args)
{
// declare two variables and initialize them
int i = 1;
double d;
Console.WriteLine(“Before the call to Update(ref int, out double):”);
Console.WriteLine(“i = “ + i + “, d is not initialized”);
// invoke the function
Update(ref i, out d);
// notice that i now equals 10 and d equals 20
Console.WriteLine(“After the call to Update(ref int, out double):”);
Console.WriteLine(“i = “ + i + “, d = “ + d);
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The ref keyword indicates that C# should pass a reference to i and not just
the value contained within this variable. Consequently, changes made within
the function are exported back out of the calling routine.

In a similar vein, the out keyword says, “Pass back by reference, but I don’t
care what the initial value is because I’m going to overwrite it anyway.”
(That’s a lot to pack into three words!) The out keyword is applicable when
the function is only returning a value to the caller.

Executing the program generates the following output:

Before the call to Update(ref int, out double):
i = 1, d is not initialized
After the call to Update(ref int, out double):
i = 10, d = 20
Press Enter to terminate...

144 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:56 PM Page 144

An out argument is always ref, though you don’t say ref out. Also, you
must pass variables to both ref and out. Passing literal values, such as 2,
generates compiler errors.

Notice that the initial values of i and d are overwritten in the function
Update(). After they are back in Main(), these variables retain their modi-
fied values. Compare this to the PassByValue() function in which the vari-
ables do not retain their modified values.

Don’t pass a variable to a function by reference twice simultaneously
Do not, under any but the most dire circumstance, pass the same variable by
reference twice in the same function call. This is more difficult to describe
than it is to demonstrate. Consider the following Update() function:

// PassByReferenceError - demonstrate a potential error situation
// when calling a function using reference
// arguments
using System;
namespace PassByReferenceError
{
public class Program
{
// Update - try to modify the values of the arguments
// passed to it
public static void DisplayAndUpdate(ref int nVar1, ref int nVar2)
{
Console.WriteLine(“The initial value of nVar1 is “ + nVar1);
nVar1 = 10;
Console.WriteLine(“The initial value of nVar2 is “ + nVar2);
nVar2 = 20;

}
public static void Main(string[] args)
{
// declare two variables and initialize them
int n = 1;
Console.WriteLine(“Before the call to Update(ref n, ref n):”);
Console.WriteLine(“n = “ + n);
Console.WriteLine();
// invoke the function
DisplayAndUpdate(ref n, ref n);
// notice that n changes in an unexpected way
Console.WriteLine();
Console.WriteLine(“After the call to Update(ref n, ref n):”);
Console.WriteLine(“n = “ + n);
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

145Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:56 PM Page 145

Update(ref int, ref int) is now declared to accept two int arguments
by reference, which, in and of itself, is not a problem. The problem arises
when the Main() function invokes Update() passing the same variable in
both arguments. Within the function, Update() modifies nVar1, which refer-
ences back to n from its initial value of 1 to the new value of 10. By the time
Update() gets around to modifying nVar2, the value of n to which it refers
has already been modified from its initial value of 1 to the new value of 10.

146 Part III: Object-Based Programming

Why do some arguments come out
but they don’t go in?

C# is careful about keeping the programmer from doing something stupid. One of the stupid things
that programmers do is forget to initialize a variable before they use it for the first time. (This is par-
ticularly true of counting variables.) C# generates an error when you try to use a variable that you’ve
declared but not initialized:

int nVariable;
Console.WriteLine(“this is an error “ + nVariable);
nVariable = 1;
Console.WriteLine(“but this is not “ + nVariable);

However, C# cannot keep track of variables from within a function:

void SomeFunction(ref int nVariable)
{
Console.WriteLine(“is this an error or not? “ + nVariable);

}

How can SomeFunction() know whether nVariablewas initialized before being passed in the
call? It can’t. Instead, C# tracks the variable in the call — for example, the following call generates
a compiler error:

int nUninitializedVariable;
SomeFunction(ref nUninitializedVariable);

If C# were to allow this call, SomeFunction()would have been passed a reference to an unini-
tialized (that is, garbage) variable. The out keyword lets both sides agree that the variable has not
yet been assigned a value. The following example compiles just fine:

int nUninitializedVariable;
SomeFunction(out nUninitializedVariable);

By the way, passing an initialized variable as an out argument is legal:

int nInitializedVariable = 1;
SomeFunction(out nInitializedVariable);

The value in nInitializedVariable gets blown away within SomeFunction(), but there’s
no danger of garbage being passed about.

13_597043 ch07.qxd 9/20/05 1:56 PM Page 146

This is shown in the following example:

Before the call to Update(ref n, ref n):
n = 1

The initial value of nVar1 is 1
The initial value of nVar2 is 10

After the call to Update(ref n, ref n):
n = 20
Press Enter to terminate...

Exactly what’s going on in this interplay between n, nVar1, and nVar2 is
about as obvious as an exotic bird’s mating dance. Neither the user program-
mer nor the Update() function author can anticipate this bizarre result. In
other words, don’t do it.

You can pass a single value as more than one argument in a single function
call if all variables are passed by value.

Returning Values after Christmas
Many real-world operations create values to return to the caller. For example,
sin() accepts an argument and returns the trigonometric sine. A function can
return a value to the caller in two ways. The most common is via the return
statement; however, a second method uses the call by reference feature.

Returning a value via return postage
The following code snippet demonstrates a small function that returns the
average of its input arguments:

public class Example
{
public static double Average(double d1, double d2)
{
double dAverage = (d1 + d2) / 2;
return dAverage;

}
public static void Test()
{
double v1 = 1.0;
double v2 = 3.0;
double dAverageValue = Average(v1, v2);
Console.WriteLine(“The average of “ + v1

+ “ and “ + v2 + “ is “
+ dAverageValue);

147Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:56 PM Page 147

// this also works
Console.WriteLine(“The average of “ + v1

+ “ and “ + v2 + “ is “
+ Average(v1, v2));

}
}

Notice first that I declare the function as public static double
Average() — the double in front of the name refers to the fact that the
Average() function returns a double-precision value to the caller.

The Average() function applies the names d1 and d2 to the double-precision
values passed to it. It creates a variable dAverage to which it assigns the aver-
age of d1 and d2. It then returns the value contained in dAverage to the caller.

People sometimes say that “the function returns dAverage.” This is a care-
less but common shorthand. Saying that dAverage or any other variable is
passed or returned anywhere is imprecise. In this case, the value contained
within dAverage is returned to the caller.

The call to Average() from the Test() function appears the same as any
other function call; however, the double value returned by Average() is
stored into the variable dAverageValue.

A function that returns a value, such as Average(), cannot return to the
caller by encountering the closed brace of the function. If it did, how would
C# know what value to return? You need a return statement.

Returning a value using pass by reference
A function can also return one or more values to the calling routine via the
ref and out keywords. Consider the Update() example described in the sec-
tion “Passing value-type arguments by reference,” earlier in this chapter:

// Update - try to modify the values of the arguments
// passed to it
public static void Update(ref int i, out double d)
{
i = 10;
d = 20.0;

}

The function is declared void because it does not return a value to the caller;
however, because the variable i is declared ref and the variable d is declared
out, any changes made to those variables within Update() retain their values
in the calling function. In other words, they’re passed back to the caller.

148 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:56 PM Page 148

When do I return and when do I out?
You may be thinking, “A function can return a value to the caller, or it can use
out (or ref, for that matter) to return a value to the caller. When do I use
return and when do I use out?” After all, you could have written the
Average() function as follows:

public class Example
{
// Note: prefer putting ‘out’ parameters last
public static void Average(double 1, double d2, out double dResults)
{
dResults = (d1 + d2) / 2;

}
public static void Test()
{
double v1 = 1.0;
double v2 = 3.0;
double dAverageValue;
Average(dAverageValue, v1, v2);
Console.WriteLine(“The average of “ + v1

+ “ and “ + v2 + “ is “
+ dAverageValue;

}
}

Typically, you return a value to the caller via the return statement rather
than via the out directive, even though it’s hard to argue with the results.

Outing a value-type variable like a double requires a somewhat inefficient
extra process known as boxing, which I describe in Chapter 14. However,
efficiency should not usually be a driving factor in your decision.

Typically, you use the out directive when a function returns more than one
value to the caller — for example:

public class Example
{
public static void AverageAndProduct(double d1, double d2, out double

dAverage, out double dProduct)
{
dAverage = (d1 + d2) / 2;
dProduct = d1 * d2;

}
}

Returning multiple values from a single function doesn’t happen as often as
you may think. A function that returns multiple values usually does so by
returning a single class object that encapsulates multiple values or by return-
ing an array of values. Both approaches result in clearer code.

149Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:56 PM Page 149

150 Part III: Object-Based Programming

Null and zero references
A reference variable, as opposed to a value-type variable, is assigned the default value nullwhen
created. However, a null reference is not the same thing as a reference to zero. For example, the
following two references are completely different:

class Example
{
int nValue;

}

// create a null reference ref1
Example ref1;

// now create a reference to a zero object
Example ref2 = new Example();
ref2.nValue = 0;

The variable ref1 is about as empty as my wallet. That variable points to the null object — that is,
it points to no object. By comparison, ref2 points to an object whose value is zero.

This difference is much less clear in the following example:

string s1;
string s2 = “”;

This is essentially the same case: s1 points to the null object, while s2 points to an empty string
(in programmer slang, an empty string is sometimes called a null string — a bit confusing). The dif-
ference is significant, as the following code shows:

// Test - test modules to utilize the TestLibrary
namespace Test
{
using System;
public class Program
{
public static void Main(string[] strings)
{
Console.WriteLine(“This program exercises the function TestString()”);
Console.WriteLine();
Example exampleObject = new Example();

Console.WriteLine(“Pass a null object:”);
string s = null;
exampleObject.TestString(s);
Console.WriteLine();

// now pass the function a “null (empty) string”
Console.WriteLine(“Pass an empty string:”);
exampleObject.TestString(“”);
Console.WriteLine();

// finally, pass a real string

13_597043 ch07.qxd 9/20/05 1:56 PM Page 150

151Chapter 7: Putting on Some High-Class Functions

Console.WriteLine(“Pass a real string:”);
exampleObject.TestString(“test string”);
Console.WriteLine();

// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

class Example
{
public void TestString(string sTest)
{
// first test for a null string object (do this test first!)
if (sTest == null)
{
Console.WriteLine(“sTest is null”);
return;

}
// at this point, you know sTest doesn’t point to the null object
// but it could still point to an empty string
// check to see if sTest points to a “null (empty) string”
if (String.Compare(sTest, “”) == 0)
{
Console.WriteLine(“sTest references an empty string”);
return;

}

// Okay, output the string
Console.WriteLine(“sTest refers to: ‘“ + sTest + “‘“);

}
}

}

The function TestString() uses the comparison sTest == null to test for a null string
object. TestString() can use the Compare() function to test for an empty string. (Compare()
returns a 0 if the two strings passed to it are equal.) Chapter 9 explains string comparison in
detail.

The output from this program is as follows:

This program exercises the function TestString()
Pass a null object:
sTest is null
Pass an empty string:
sTest references an empty string
Pass a real string:
sTest refers to: ‘test string’
Press Enter to terminate...

13_597043 ch07.qxd 9/20/05 1:56 PM Page 151

Defining a function with no value
The declaration public static double Average(double, double)
declares a function Average() that returns the average of its arguments as
a double. The number returned better be the average of the input values
or someone has some serious explaining to do.

Some functions don’t return a value to the caller. An earlier example function
AverageAndDisplay() displays the average of its input arguments but doesn’t
return that average to the caller. That may not be such a good idea, but mine
is not to question. Rather than leave the return type blank, a function like
AverageAndDisplay() is declared as follows:

public void AverageAndDisplay(double, double)

The keyword void, where the return type would normally go, means the non-
type. That is, the declaration void indicates that the AverageAndDisplay()
function returns no value to the caller. (Regardless, every function declara-
tion specifies a return type, even if it’s void.)

A function that returns no value is referred to as a void function. That doesn’t
mean the function is empty or that it’s used for some medical purposes. It
simply refers to the initial keyword. By comparison, a function that returns
some value is known as a nonvoid function.

A nonvoid function must pass control back to the caller by executing a
return followed by the value to return to the caller. A void function has no
value to return. A void function returns when it encounters a return with no
value attached. Or, by default (if no return exists), a void function exits
automatically when control reaches the closing brace of the function.

Consider the following DisplayRatio() function:

public class Example
{
public static void DisplayRatio(double dNumerator,

double dDenominator)
{
// if the denominator is zero . . .
if (dDenominator == 0.0)
{
// . . .output an error message and . . .
Console.WriteLine(“The denominator of a ratio cannot be 0”);
// . . .return to the caller
return;

}
// this is only executed if dDenominator is non-zero
double dRatio = dNumerator / dDenominator;
Console.WriteLine(“The ratio of “ + dNumerator

+ “ over “ + dDenominator

152 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:56 PM Page 152

+ “ is “ + dRatio);
} // if the denominator isn’t zero, the function exits here

}

The DisplayRatio() function first checks whether the dDenominator value
is zero, as follows:

� If it is zero, the program displays an error message and returns to the
caller without attempting to calculate a ratio. Doing so would divide the
numerator value by zero and cause a CPU processor fault, also known
by the more descriptive name processor upchuck.

� If dDenominator is nonzero, the program displays the ratio. The closed
brace immediately following the WriteLine() is the closed brace of the
DisplayRatio() function and, therefore, acts as the return point for
the program.

The Main() Deal — Passing
Arguments to a Program

Look at any console application in this book. In every case, execution begins
with Main(). Consider the arguments in the following declaration of Main():

public static void Main(string[] args)
{
// . . .your program goes here . . .

}

Main() is a static or class function of the class Program defined by the Visual
Studio AppWizard. Main() returns no value and accepts as its arguments an
array of string objects. What are these strings?

To execute a console application, the user enters the name of the program
at the command line. The user has the option of adding arguments after the
program name. You see this all the time in commands like copy myfile
C:\myDirectory, which copies the file myfile into the mydirectory folder
in the root directory of the C: drive.

As demonstrated in the following DisplayArguments example, the array of
string values passed to Main() are the arguments to the current program:

// DisplayArguments - display the arguments passed to the
// program
using System;
namespace DisplayArguments
{
public class Test // the class containing Main() doesn’t

153Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:56 PM Page 153

// have to be called Program
{
public static int Main(string[] args)
{
// count the number of arguments
Console.WriteLine(“There are {0} program arguments”,

args.Length);
// the arguments are:
int nCount = 0;
foreach(string arg in args)
{
Console.WriteLine(“Argument {0} is {1}”,

nCount++, arg);
}
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();
return 0; // other programs that run in the console window

// may check this return value; non-zero usually means failure
}

}
}

Notice first that Main() can also return a value rather than being declared
void, as it is elsewhere in this book. But it must be static.

This program begins by displaying the length of the args array. This value cor-
responds to the number of arguments passed to the function. The program then
loops through the elements of args, outputting each element to the console.

An example execution of this program (as described next, in which the first
line is what you type at the command prompt) generates the following results:

DisplayArguments /c arg1 arg2
There are 3 program arguments
Argument 0 is /c
Argument 1 is arg1
Argument 2 is arg2
Press Enter to terminate...

You can see that the name of the program itself does not appear in the argu-
ment list. (Another function exists by which the program can find out its own
name dynamically.) The user has typed three arguments, all strings. The first,
/c, is a switch. Notice that the switch /c is not handled differently from other
arguments — the program itself must handle the parsing of arguments to the
program. Only the program knows what /c means to it.

Most console applications allow switches (codes) that control some details
of the way the program operates. Bonus Chapter 5 has more to say about
command-line switches.

154 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:56 PM Page 154

Passing arguments from a DOS prompt
Execute the following steps to run the DisplayArguments program from a
DOS prompt:

1. Choose Start➪Programs➪Accessories➪Command Prompt.

You should be looking at a black window with a blinking cursor next to a
silly C:\> prompt. (It may include some directories, too.)

2. Navigate to the directory containing the DisplayArguments project
by entering the following:

cd \C#Programs\DisplayArguments\bin\Debug

(The default root folder for the example programs in this book is
C#Programs. Use the root folder that you chose if it differs from the
default.)

The prompt changes to C:\C#Programs\DisplayArguments\bin\
Debug>.

If all else fails, just use Windows to search for the folder. From Windows
Explorer, right-click the folder C:\C#Programs and then choose Search,
as shown in Figure 7-2.

Figure 7-2:
The Search

facility is
great for
tracking

down files,
but narrow
the search

to a
particular

folder if your
hard drive

is large.

155Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:56 PM Page 155

In the dialog box that’s displayed, enter DisplayArguments.exe, and
then click the Search button. The filename appears in the right pane of
the Search Results window, as shown in Figure 7-3. Ignore the
DisplayArguments.exe file in the obj\Debug directory — and the man
behind the curtain, while you’re at it. You want the one in bin\Debug.
You may have to fiddle with Windows Explorer’s right pane to find the
full path name, depending on how deep in the folder hierarchy you find
it. This is especially true if you store things in the My Documents folder.
After you find the file, return to the console window and navigate to the
file’s location.

Visual Studio 2005 normally places the executables it generates in a
bin\Debug subdirectory; however, it could be bin\release or another
directory, if you’ve changed the configuration in Visual Studio.

Windows has no problem with naming a file or directory with spaces
included; however, DOS can get confused. For versions of Windows prior
to Windows XP, you may need to put quotes around a filename or direc-
tory name with spaces. For example, I would navigate to a file in the My
Stuff folder by using a command like this one:

cd \”My Stuff”

3. With the command prompt showing C:\C#Programs\Display
Arguments\bin\Debug>, execute the DisplayArguments.exe file
found there by entering the following:

displayarguments /c arg1 arg2

Figure 7-3:
There it is!
The folder

name is just
to the right

of the
filename.

156 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:56 PM Page 156

The program should respond with the output shown in Figure 7-4.
Notice that the console window doesn’t care whether you capitalize
DisplayArguments, and you don’t have to add the .exe extension.

Passing arguments from a window
You can execute a program like DisplayArguments by typing its name on the
command line of the Command Prompt window. You also can execute it from
the Windows interface by double-clicking the name of the program either
within a window or from Windows Explorer.

As shown in Figure 7-5, double-clicking DisplayArguments executes the pro-
gram as if you had entered the program name on the command line with no
arguments:

There are 0 program arguments
Press Enter to terminate...

Press Enter to terminate the program and close the window.

Dragging and dropping one or more files onto DisplayArguments.exe in
Windows Explorer executes the program as if you had entered Display
Arguments filenames on the command line. Simultaneously dragging and
dropping the files arg1.txt and arg2.txt onto DisplayArguments exe-
cutes the program with multiple arguments, as shown in Figure 7-6.

To drag and drop more than one file, select file1.txt in the list, hold down
Ctrl, and then select the files you want, as shown in Figure 7-6. Now click and
drag the set of files and drop them on DisplayArguments.

Figure 7-4:
Executing
Display

Arguments
from the

DOS prompt
displays

arguments
of the

program
right back

at you.

157Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:56 PM Page 157

The output from dropping the files arg1.txt and arg2.txt in Windows
Explorer is shown in Figure 7-7.

Figure 7-6:
You can

drop a file
onto a

console
program

using the
Windows
drag-and-

drop
feature.

Figure 7-5:
In Windows

Explorer,
you can

execute the
console

program by
double-

clicking its
name.

158 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:56 PM Page 158

Notice that Windows passes the files to DisplayArguments in no particular
order.

Passing arguments from
Visual Studio 2005
To execute a program from Visual Studio 2005, make sure that the program
builds without errors. Choose Build➪Build programname and check the
Output window that appears for errors. The proper response is Build: 1
succeeded, 0 failed, 0 skipped. If you see anything else, your program
will not start.

Executing your program without passing it any arguments is but a click away.
After you have a successful build, choose Debug➪Start Debugging (or press
F5) or Debug➪Start Without Debugging (press Ctrl+F5), and you’re off to the
races.

Figure 7-7:
Dropping

the files on
the program

name
produces
the same

result as if
you had

executed
the program

from the
command

line, passing
it those

filenames.

159Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:56 PM Page 159

By default, Visual Studio executes a program without any arguments. If that’s
not what you want, you have to tell Visual Studio what arguments to use.
Follow these steps to do so:

1. Open the Solution Explorer by choosing View➪Solution Explorer.

The Solution Explorer window provides a description of your solution. The
solution consists of one or more projects. Each project describes a pro-
gram. For example, the DisplayArguments project says that Program.cs
is one of the files in your program and that your program is a Console
application. The project also contains other properties, such as the argu-
ments to use when executing DisplayArguments with Visual Studio.

2. Right-click DisplayArguments in the Solution Explorer and choose
Properties from the pop-up menu, as shown in Figure 7-8.

A window like that shown in Figure 7-9 appears, showing a lot of project
variables that you can meddle with — please don’t.

160 Part III: Object-Based Programming

The WriteLine() function
You may have noticed that the WriteLine()
construct that you’ve been using in the pro-
grams so far is nothing more than a function call
that’s invoked with something called a
Console class, as follows:

Console.WriteLine(“this is a function
call”);

WriteLine() is one of many predefined func-
tions provided by the .NET framework library.
Console is a predefined class that refers to the
application console (also known as the
Command Prompt or Command Window).

The argument to the WriteLine() that you’ve
been using in previous examples is a single
string. The + operator enables the program-
mer to combine strings, or to combine a
string and an intrinsic variable before the
sum is passed to WriteLine(), as follows:

string s = “Sarah”
Console.WriteLine(“My name is “ + s + “

and my age is “ + 3);

All that WriteLine() sees in this case is “My
name is Sarah and my age is 3.”

A second form of WriteLine() provides a
more flexible set of arguments, as follows:

Console.WriteLine(“My name is {0} and my
age is {1}.”,

“Sarah”, 3);

The first argument is called a format string.
Here, the string “Sarah” is inserted where
the symbol {0} appears — zero refers to the first
argument after the format string. The integer 3 is
inserted at the position marked by {1}. This form
is more efficient than the previous example
because concatenating strings is not as easy
as it sounds. It’s a time-consuming business, but
someone has to do it.

It wouldn’t be much to write home about if that
were the only difference. However, this second
form of WriteLine() also provides a number
of controls on the output format. I describe
these format controls in Chapter 9.

13_597043 ch07.qxd 9/20/05 1:56 PM Page 160

Figure 7-9:
Enter the
program

arguments
into the

Command
Line

Arguments
field of the
Debug tab

on the
Display

Arguments
tab.

Figure 7-8:
Access the

project
properties

by right-
clicking the
name of the

project,
Display

Arguments,
in Solution

Explorer.

161Chapter 7: Putting on Some High-Class Functions

13_597043 ch07.qxd 9/20/05 1:56 PM Page 161

3. In the DisplayArguments tab, select Debug in the column of tabs
down the left side.

4. In the Command Line Arguments field under Start Options, type in the
arguments that you want to pass to your program when Visual Studio
starts it.

Figure 7-9 shows the arguments /c arg1.txt arg2.txt being entered.

5. Save, close the Properties window, and then execute the program nor-
mally by choosing Debug➪Start.

As shown in Figure 7-10, Visual Studio opens a DOS window with the
expected results:

There are 3 program arguments
Argument 0 is /c
Argument 1 is arg1
Argument 2 is arg2
Press Enter to terminate...

The only difference between the output from executing the program from
Visual Studio 2005 and from the command line is the absence of the program
name in the display.

Figure 7-10:
Visual

Studio can
pass

arguments
to its

Console
Application

programs.

162 Part III: Object-Based Programming

13_597043 ch07.qxd 9/20/05 1:56 PM Page 162

Chapter 8

Class Methods
In This Chapter
� Passing an object to a function

� Converting a class function into a method

� What is this?

� Creating the best documentation in town (I know, but I made it)

This chapter moves from the static functions discussed in Chapter 7 to
nonstatic methods of a class. Static functions belong to the whole class,

while methods belong to each instance created from the class. By the way,
many programmers choose to call everything a method or everything a func-
tion rather than making the distinction as I have. But there are important dif-
ferences between static and nonstatic class members.

Passing an Object to a Function
You pass object references as arguments to functions in the same way that
you pass value-type variables, with one difference: You always pass objects
by reference.

The following small program demonstrates how you pass objects — to func-
tions, that is:

// PassObject - demonstrate how to pass an object

// to a function
using System;
namespace PassObject
{
public class Student
{
public string sName;

}
public class Program
{

14_597043 ch08.qxd 9/20/05 1:59 PM Page 163

public static void Main(string[] args)
{
Student student = new Student();
// set the name by accessing it directly
Console.WriteLine(“The first time:”);
student.sName = “Madeleine”;
OutputName(student);
// change the name using a function
Console.WriteLine(“After being modified:”);
SetName(student, “Willa”);
OutputName(student);
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// OutputName - output the student’s name
public static void OutputName(Student student)
{
// output current student’s name
Console.WriteLine(“Student’s name is {0}”, student.sName);

}
// SetName - modify the student object’s name
public static void SetName(Student student, string sName)
{
student.sName = sName;

}
}

}

The program creates a student object consisting of nothing but a name.
(We like to keep ’em simple down here.) The program first sets the name of
the student directly and passes it to the output function OutputName().
OutputName() displays the name of any Student object it receives.

The program then updates the name of the student by calling SetName().
Because all reference-type objects are passed by reference in C#, the changes
made to student are retained back in the calling function. When Main() out-
puts the student object again, the name has changed, as shown in the fol-
lowing code:

The first time:
Student’s name is Madeleine
After being modified:
Student’s name is Willa
Press Enter to terminate...

The SetName() function can change the name within the Student object and
make it stick.

164 Part III: Object-Based Programming

14_597043 ch08.qxd 9/20/05 1:59 PM Page 164

Notice that you don’t use the ref keyword when passing a reference-type
object. Yet the effect is that the object’s contents can be modified through the
reference. However, if OutputName() tried to assign a whole new Student
object to its Student parameter, this wouldn’t affect the original Student
object outside the function, as the following code shows:

Student student = new Student();
student.Name = “Madeleine”;
OutputName(student);
Console.WriteLine(student.Name); // still “Madeleine”
...
// a revised OutputName():
public static void OutputName(Student student)
{
student = new Student(); // doesn’t replace student outside OutputName()
student.Name = “Pam”;

}

Defining Object Functions and Methods
A class is supposed to collect the elements that describe a real-world object
or concept. For example, a Vehicle class may contain data elements for max-
imum velocity, weight, carrying capacity, and so on. However, a Vehicle has
active properties as well: the ability to start, to stop, and the like. These are
described by the functions that go with that vehicular data. These functions
are just as much a part of the Vehicle class as the data elements.

Defining a static member function
For example, you could rewrite the program from the previous section in a
slightly better way as follows:

// PassObjectToMemberFunction - rely upon static member functions

// to manipulate fields within the object
using System;
namespace PassObjectToMemberFunction
{
public class Student
{
public string sName;
// OutputName - output the student’s name
public static void OutputName(Student student)

165Chapter 8: Class Methods

14_597043 ch08.qxd 9/20/05 1:59 PM Page 165

{
// output current student’s name
Console.WriteLine(“Student’s name is {0}”, student.sName);

}
// SetName - modify the student object’s name
public static void SetName(Student student, string sName)
{
student.sName = sName;

}
}
public class Program
{
public static void Main(string[] args)
{
Student student = new Student();
// set the name by accessing it directly
Console.WriteLine(“The first time:”);
student.sName = “Madeleine”;
Student.OutputName(student);
// change the name using a function
Console.WriteLine(“After being modified:”);
Student.SetName(student, “Willa”);
Student.OutputName(student);
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

This program has only one significant change from the PassObject program
in the previous section: I put the OutputName() and SetName() functions in
the Student class.

Because of that change, Main() must reference the Student class in the calls
to SetName() and OutputName(). The functions are now members of the
class Student and not Program, the class in which Main() resides.

This is a small but significant step. Placing OutputName() within the class
leads to a higher level of reuse: Outside functions that need to display the
object can find OutputName(), along with other output functions, right there
as part of the class. It doesn’t have to be written separately by each program
using the Student class.

This is also a better solution on a philosophical level. Class Program shouldn’t
need to worry about how to initialize the name of a Student object nor about
how to output important material. The Student class should contain that
information. Objects are responsible for themselves.

In fact, Main() should not initialize the name to Madeleine in the first place.
It should call SetName() instead.

166 Part III: Object-Based Programming

14_597043 ch08.qxd 9/20/05 1:59 PM Page 166

From within Student, one member function can invoke another without
explicitly applying the class name. SetName() could invoke OutputName()
without needing to reference the class name. If you leave off the class name,
C# assumes that the function being accessed is in the same class.

Defining a method
The data members of an object — an instance of a class — are accessed with
the object and not with the class. Thus, you may say the following:

Student student = new Student(); // create an instance of Student
student.sName = “Madeleine”; // access the member via the instance

C# enables you to invoke nonstatic member functions in the same way:

student.SetName(“Madeleine”);

The following example demonstrates this technique:

// InvokeMethod - invoke a member function through the object

using System;
namespace InvokeMethod
{
class Student
{
// the name information to describe a student
public string sFirstName;
public string sLastName;
// SetName - save off name information (no longer static)
public void SetName(string sFName, string sLName)
{
sFirstName = sFName;
sLastName = sLName;

}
// ToNameString - convert the student object into a
// string for display (not static)
public string ToNameString()
{
string s = sFirstName + “ “ + sLastName;
return s;

}
}
public class Program
{
public static void Main()
{
Student student = new Student();
student.SetName(“Stephen”, “Davis”);
Console.WriteLine(“Student’s name is “

167Chapter 8: Class Methods

14_597043 ch08.qxd 9/20/05 1:59 PM Page 167

+ student.ToNameString());
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The output from this program is this simple line:

Student’s name is Stephen Davis

Other than having a much shorter name, this program is very similar to the
earlier PassObjectToMemberFunction program. This version uses nonstatic
functions to manipulate both a first and a last name.

The program begins by creating a new Student object, student. The pro-
gram then invokes the SetName() function, which stores the two strings
“Stephen” and “Davis” into the data members sFirstName and sLastName.
Finally, the program calls the member function ToNameString(), which
returns the name of the student by concatenating the two strings.

For historical reasons that have nothing to do with C#, a nonstatic member
function is commonly known as a method. I use the term method for nonstatic
member functions, and I use function for all other types. Some programmers
use the terms instance method (nonstatic) and class method (static).

Look again at the SetName() method that updates the first and last name
fields in the Student object. Which object does SetName() modify? Consider
the following example to see how it works:

Student christa = new Student(); // here’s one student
Student sarah = new Student(); // and here’s a completely different one
christa.SetName(“Christa”, “Smith”);
sarah.SetName(“Sarah”, “Jones”);

The first call to SetName() updates the first and last name of the christa
object. The second call updates the sarah object.

Thus, C# programmers say that a method operates on the current object. In
the first call, the current object is christa; in the second, it’s sarah.

Expanding a method’s full name
A subtle but important problem exists with my description of method names.
To see the problem, consider the following example code snippet:

168 Part III: Object-Based Programming

14_597043 ch08.qxd 9/20/05 1:59 PM Page 168

public class Person
{
public void Address()
{
Console.WriteLine(“Hi”);

}
}
public class Letter
{
string sAddress;
// save off the address
public void Address(string sNewAddress)
{
sAddress = sNewAddress;

}
}

Any subsequent discussion of the Address() method is now ambiguous. The
Address() method within Person has nothing to do with the Address()
method in Letter. If my programmer friend tells me to access the
Address() method, which Address() does he mean?

The problem lies not with the methods themselves, but with my description.
In fact, no Address() method exists as an independent entity — only a
Person.Address() and a Letter.Address() method. Attaching the class
name to the beginning of the method name clearly indicates which method is
intended.

This description is very similar to people’s names. Within my family, I am
known as Stephen. (Actually, within my family, I am known by my middle
name, but you get the point.) There are no other Stephens within my family
(at least not within my close family). However, there are two other Stephens
where I work.

If I’m at lunch with some coworkers and the other two Stephens aren’t pre-
sent, the name Stephen clearly refers to me. Back in the trenches (or cubi-
cles), yelling out “Stephen” is ambiguous because it could refer to any one of
us. In that context, you need to yell out “Stephen Davis” as opposed to
“Stephen Williams” or “Stephen Leija.”

Thus, you can consider Address() to be the first name or nickname of a
method, with its class as the family name.

Accessing the Current Object
Consider the following Student.SetName() method:

169Chapter 8: Class Methods

14_597043 ch08.qxd 9/20/05 1:59 PM Page 169

class Student
{
// the name information to describe a student
public string sFirstName;
public string sLastName;
// SetName - save off name information
public void SetName(string sFName, string sLName)
{
sFirstName = sFName;
sLastName = sLName;

}
}
public class Program
{
public static void Main()
{
Student student1 = new Student();
student1.SetName(“Joseph”, “Smith”);
Student student2 = new Student();
student2.SetName(“John”, “Davis”);

}
}

The function Main() uses the SetName() method to update first student1
and then student2. But you don’t see a reference to either Student object
within SetName() itself. In fact, no reference to a Student object exists. A
method is said to operate on “the current object.” How does a method know
which one is the current object? Will the real current object please stand up?

The answer is simple. The current object is passed as an implicit argument in
the call to a method — for example:

student1.SetName(“Joseph”, “Smith”);

This call is equivalent to the following:

Student.SetName(student1, “Joseph”, “Smith”); // equivalent call
// (but this won’t build properly)

I’m not saying you can invoke SetName() in two different ways, just that the
two calls are semantically equivalent. The object identifying the current
object — the hidden first argument — is passed to the function, just like
other arguments. Leave that up to the compiler.

Passing an object implicitly is pretty easy to swallow, but what about a refer-
ence from one method to another? The following code illustrates calling one
method from another:

170 Part III: Object-Based Programming

14_597043 ch08.qxd 9/20/05 1:59 PM Page 170

public class Student
{
public string sFirstName;
public string sLastName;
public void SetName(string sFirstName, string sLastName)
{
SetFirstName(sFirstName);
SetLastName(sLastName);

}
public void SetFirstName(string sName)
{
sFirstName = sName;

}
public void SetLastName(string sName)
{
sLastName = sName;

}
}

No object appears in the call to SetFirstName(). The current object contin-
ues to be passed along silently from one method call to the next. An access to
any member from within an object method is assumed to be with respect to
the current object. The upshot is that a method “knows” which object it
belongs to.

What is the this keyword?
Unlike most arguments, the current object does not appear in the function
argument list, so it is not assigned a name by the programmer. Instead, C#
assigns this object the not-very-imaginative name this, useful in the few situ-
ations where you need to refer directly to the current object.

this is a C# keyword, and it may not be used for any other purpose, at least
not without the express written permission of the National Football League.

Thus, you could write the previous example as follows:

public class Student
{
public string sFirstName;
public string sLastName;
public void SetName(string sFirstName, string sLastName)
{
// explicitly reference the “current object” referenced by this
this.SetFirstName(sFirstName);
this.SetLastName(sLastName);

171Chapter 8: Class Methods

14_597043 ch08.qxd 9/20/05 1:59 PM Page 171

}
public void SetFirstName(string sName)
{
this.sFirstName = sName;

}
public void SetLastName(string sName)
{
this.sLastName = sName;

}
}

Notice the explicit addition of the keyword this. Adding this to the member
references doesn’t add anything because this is assumed. However, when
Main() makes the following call, this references student1 throughout
SetName() and any other method that it may call:

student1.SetName(“John”, “Smith”);

When is this explicit?
You don’t normally need to refer to this explicitly because it is understood
where necessary by the compiler. However, two common cases require this.
You may need it when initializing data members, as follows:

class Person
{
public string sName;
public int nID;
public void Init(string sName, int nID)
{
this.sName = sName; // argument names same as data member names
this.nID = nID;

}
}

The arguments to the Init() method are named sName and nID, which
match the names of the corresponding data members. This makes the func-
tion easy to read because you know immediately which argument is stored
where. The only problem is that the name sName in the argument list obscures
the name of the data member. The compiler will complain about it.

The addition of this clarifies which sName is intended. Within Init(), the
name sName refers to the function argument, but this.sName refers to the
data member.

You also need this when storing off the current object for use later or
by some other function. Consider the following example program
ReferencingThisExplicitly:

172 Part III: Object-Based Programming

14_597043 ch08.qxd 9/20/05 1:59 PM Page 172

// ReferencingThisExplicitly - this program demonstrates
// how to explicitly use the reference to this
using System;
namespace ReferencingThisExplicitly
{
public class Program
{
public static void Main(string[] strings)
{
// create a student
Student student = new Student();
student.Init(“Stephen Davis”, 1234);
// now enroll the student in a course
Console.WriteLine

(“Enrolling Stephen Davis in Biology 101”);
student.Enroll(“Biology 101”);
// display student course
Console.WriteLine(“Resulting student record:”);
student.DisplayCourse();
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
// Student - our university student class
public class Student
{
// all students have a name and id
public string sName;
public int nID;
// the course in which the student is enrolled
CourseInstance courseInstance;
// Init - initialize the student object
public void Init(string sName, int nID)
{
this.sName = sName;
this.nID = nID;
courseInstance = null;

}
// Enroll - enroll the current student in a course
public void Enroll(string sCourseID)
{
courseInstance = new CourseInstance();
courseInstance.Init(this, sCourseID);

}
// Display the name of the student
// and the course
public void DisplayCourse()
{
Console.WriteLine(sName);
courseInstance.Display();

}
}

173Chapter 8: Class Methods

14_597043 ch08.qxd 9/20/05 1:59 PM Page 173

// CourseInstance - a combination of a student with
// university course
public class CourseInstance
{
public Student student;
public string sCourseID;
// Init - tie the student to the course
public void Init(Student student, string sCourseID)
{
this.student = student;
this.sCourseID = sCourseID;

}
// Display - output the name of the course
public void Display()
{
Console.WriteLine(sCourseID);

}
}

}

This program is fairly mundane. The Student object has room for a name, an
ID, and a single instance of a university course (not a very industrious stu-
dent). Main() creates the student instance and then invokes Init() to ini-
tialize the instance. At this point, the courseInstance reference is set to
null because the student is not yet enrolled in a class.

The Enroll() method enrolls the student by initializing courseInstance
with a new object. However, the CourseInstance.Init() method takes an
instance of Student as its first argument along with the course ID as the
second argument. Which Student should you pass? Clearly, you need to pass
the current Student — the Student referred to by this. (Thus, you can say
that Enroll() enrolls this student in the CourseInstance.)

What happens when I don’t have this?
Mixing class (static) functions and (nonstatic) object methods is like mixing
cowboys and ranchers. Fortunately, C# gives you some ways around the prob-
lems between the two. Sort of reminds me of the song from Oklahoma! — “Oh,
the function and the method can be friends . . .”

To see the problem, consider the following program snippet
MixingFunctionsAndMethods:

// MixingFunctionsAndMethods - mixing class functions and object
// methods can cause problems
using System;
namespace MixingFunctionsAndMethods
{
public class Student

174 Part III: Object-Based Programming

14_597043 ch08.qxd 9/20/05 1:59 PM Page 174

{
public string sFirstName;
public string sLastName;
// InitStudent - initialize the student object
public void InitStudent(string sFirstName, string sLastName)
{
this.sFirstName = sFirstName;
this.sLastName = sLastName;

}
// OutputBanner - output the introduction
public static void OutputBanner()
{
Console.WriteLine(“Aren’t we clever:”);
// Console.WriteLine(? what student do we use ?);

}
public void OutputBannerAndName()
{
// the class Student is implied but no this
// object is passed to the static function
OutputBanner(); // a static function
// here, the current

Student object is passed explicitly
OutputName(this);

}
// OutputName - output the student’s name
public static void OutputName(Student student)
{
// here the Student object is referenced explicitly
Console.WriteLine(“Student’s name is {0}”,

student.ToNameString());
}
// ToNameString - fetch the student’s name
public string ToNameString()
{
// here the current object is implicit -
// this could have been written:
// return this.sFirstName + “ “ + this.sLastName;
return sFirstName + “ “ + sLastName;

}
}
public class Program
{
public static void Main(string[] args)
{
Student student = new Student();
student.InitStudent(“Madeleine”, “Cather”);
// output the banner and name
Student.OutputBanner();
Student.OutputName(student);
Console.WriteLine();
// output the banner and name again
student.OutputBannerAndName();

175Chapter 8: Class Methods

14_597043 ch08.qxd 9/20/05 1:59 PM Page 175

// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

Start at the bottom of the program with Main() so that you can better see
the problems. The program begins by creating a Student object and initializ-
ing its name. The simpleton program now wants to do nothing more than
output the name preceded by a short message and banner.

Main() first outputs the banner and message using the class or static func-
tion approach. The program invokes the OutputBanner() function for the
banner line and the OutputName() function to output the message and the
student name. The function OutputBanner() outputs a simple message to the
console. Main() passes the student object as an argument to OutputName()
so that it can display the student’s name.

Next, Main() uses the object function or method approach to outputting the
banner and message by calling student.OutputBannerAndName().

OutputBannerAndName() first invokes the static function OutputBanner().
The class Student is assumed. No object is passed because the static function
does not need one. Next, OutputBannerAndName() calls the OutputName()
function. OutputName() is also a static function, but it takes a Student object
as its argument. OutputBannerAndName() passes this for that argument.

A more interesting case is the call to ToNameString() from within
OutputName(). The latter function is declared static and therefore has no
this. It does have an explicit Student object, which it uses to make the call.

The OutputBanner() function would probably like to call ToNameString()
as well; however, it has no Student object to use. It has no this pointer
because it is a static function and it was not passed an object explicitly.

A static function cannot call a nonstatic method without explicitly providing
an object. No object, no call. In general, static functions cannot access any
nonstatic items in the class. But nonstatic (instance) methods can access
static as well as instance items: static data members and static methods.

Getting Help from Visual Studio —
Auto-Complete

Visual Studio has a powerful programming feature known as auto-complete.
When you’re typing in the name of a class or object in your source code,

176 Part III: Object-Based Programming

14_597043 ch08.qxd 9/20/05 1:59 PM Page 176

Visual Studio tries to anticipate the name of the class or method that you’re
trying to enter.

Describing the Visual Studio auto-complete help is easiest by example. To
show you how it works, I use the following section of code from the program
MixingFunctionsAndMethods:

// output the banner and name
Student.OutputBanner();
Student.OutputName(student);
Console.WriteLine();
// output the banner and name again
student.OutputBannerAndName();

Auto-complete is great, but when you need more detail, choose Help➪Index
to browse online help. You can filter what the index shows, such as limiting it
to C# or .NET. Start with the Index, using it like a book index. If necessary,
also try Search (for a full-text search of topics) or Contents (to overview Help
categories). You can also save favorite topics so that they’re easy to find
again. For much more on using Help, see Bonus Chapter 4 on the CD.

Getting help on built-in functions
from the System Library
Using MixingFunctionsAndMethods as an example, as you begin typing
Console., Visual Studio responds with a list of all the methods of Console.
When I enter W, Visual Studio moves the display down to the first method
that begins with a W, which is Write(). Moving the selection down one by
pressing the down-arrow key highlights WriteLine(). Immediately off to the
right appears an explanation of the WriteLine() method, as shown in Figure
8-1. It also notes the 19 overloaded versions of the WriteLine() method —
each with a different argument set, of course.

Figure 8-1:
The Visual

Studio auto-
complete
feature is

a great help
in picking

the proper
method
to use.

177Chapter 8: Class Methods

14_597043 ch08.qxd 9/20/05 1:59 PM Page 177

You complete the name of the function WriteLine. As soon as you enter the
open parenthesis, Visual Studio changes the window to show the possible
arguments, as shown in Figure 8-2.

You don’t actually have to type the name of the function. Suppose you had
entered WriteL, enough to uniquely identify the method you want. Without
completing WriteLine, enter the open parenthesis (or whatever the next
character happens to be), and Visual Studio completes the name for you. Or
press Ctrl-Spacebar to pop up the auto-complete menu.

Click the small arrows on the left side of the pop-up box to find the overloaded
version of WriteLine() that you’re looking for. Below the description of the
function, you see the description of the first argument, if any. WriteLine has
19 overloaded versions for various data types. The first one you see in auto-
complete (number 1 of 19) takes no arguments. Use the ↓ and ↑ keys to scroll
through the overloads. For example, the second takes a bool argument.
Number 14 of 19 first wants a format string, in which you can embed place-
holders ({0}, {1}, . . .) for pieces of data that you list following the format
string. And so on.

Using the WriteLine overload that takes a format string, as soon as you enter
the string “some string {0}” (what do you want? it’s late) followed by a
comma, Visual Studio responds with a description of the second argument, as
shown in Figure 8-3.

Visual Studio provides help with each subsequent argument as you move
down the line. Of course, this help is available for every built-in method your
program uses from the standard C# library.

Figure 8-2:
The Visual

Studio auto-
complete

feature also
displays a
list of the
possible

arguments
for Write
Line().

178 Part III: Object-Based Programming

14_597043 ch08.qxd 9/20/05 1:59 PM Page 178

Getting help with your own
functions and methods
Some help is available for your own functions, as well. (You can have just as
much trouble remembering the arguments for your own as for .NET’s.)

Continuing the example from the preceding section, say that you delete the
very original “some string {0}” and replace it with the intended empty
string: Console.WriteLine(). On the very next line, you enter student. As
soon as you type the period, Visual Studio opens a list of the members of the
Student object. If you continue typing the first letters of the member name,
Visual Studio highlights the first item in the list that matches what you’ve
typed so far, as shown in Figure 8-4. It also shows the highlighted method’s
declaration so you know how to use it.

Figure 8-4:
Auto-

complete
works for
your own
methods,

as well.

Figure 8-3:
The Visual

Studio auto-
complete

feature also
provides
help with

the different
arguments.

179Chapter 8: Class Methods

14_597043 ch08.qxd 9/20/05 1:59 PM Page 179

The objects in the auto-complete list with the little boxes that slant from the
lower left to the upper right denote data members. The little bricks that slant
from upper left to lower right denote methods.

They’re easier to discriminate in practice. The data member bricks are sort of
an aqua color, and the method bricks are pink.

You may not recognize some of the methods. These are basic methods, such
as Equals and GetHashCode, that all objects get for free. Mixed in with this
standard group of methods is your very own OutputBannerAndName().

Once again, entering an open parenthesis at this point allows the auto-complete
feature to complete the name of the method.

The same feature works for functions, as well. As you enter the class name
Student followed by the period, Visual Studio opens a list of the members of
Student. As soon as you type OutputN, Visual Studio responds with a list of
the arguments for the OutputName() method, as shown in Figure 8-5.

Adding to the help
The Visual Studio auto-complete feature gives you considerable help by
anticipating the members you may want to access as soon you enter the
class or object name.

Visual Studio can provide only limited help for user-created functions
and classes. For example, Visual Studio doesn’t know what the method
OutputName() does, so there’s no descriptive text below the basic method
declaration you get in auto-complete. You would have to be dreaming about
how nice it will be when you can finish this book and make megabucks as a

Figure 8-5:
The Visual

Studio auto-
complete

feature
gives you
as much

information
as it can,
whether

for object
methods
or class

functions.

180 Part III: Object-Based Programming

14_597043 ch08.qxd 9/20/05 1:59 PM Page 180

C# programmer to not get some idea because the name is reasonably
descriptive. Fortunately, Visual Studio gives you a sneaky way to tell the auto-
complete feature what the function does — and more. A lot more, if you want.
Here’s how.

You mark a normal comment line with two slashes: //. However, Visual Studio
understands a special comment of three slashes in a row: ///. This type of
documentation comment can provide Visual Studio with extra information to
be used by the auto-complete feature.

To be fair, the Java language first introduced this concept. Java provides an
extra program that can pull these three-slash comments out into a separate
documentation file. C# adds an improvement by using such comments in its
dynamic, edit-time help.

The documentation comment can contain any combination of the elements
shown in Table 8-1.

Table 8-1 The Common Documentation Comment Instructions
Instruction What It Means

<summary></summary> Describes the function itself. Displays when you
enter the name of the function during editing.

<param></param> Describes an argument to the function. Displays after
you type in the function name and the open parenthe-
sis, prompting you about what you should enter next.
Use one set of <param> tags per argument.

<returns></returns> Describes the value returned by the function.

Documentation comments follow XML/HTML rules: A command starts with
a <command> tag and ends with a </command> tag. In fact, they are normally
known as XML tags due to their relationship to XML.

Numerous other XML tags are available for documentation comments. For
more information, choose Help➪Index and then look under “XML documenta-
tion features [C#].”

The following example is a commented version of the MixingFunctionsAnd-
Methods program:

// MixingFunctionsAndMethodsWithXMLTags - mixing class functions
// and object methods can cause problems
using System;
namespace MixingFunctionsAndMethods
{
/// <summary>

181Chapter 8: Class Methods

14_597043 ch08.qxd 9/20/05 1:59 PM Page 181

/// Simple description of a student
/// </summary>
public class Student
{
/// <summary>
/// Student’s given name
/// </summary>
public string sFirstName;
/// <summary>
/// Student’s family name
/// </summary>
public string sLastName;

// InitStudent
/// <summary>
/// Initializes the student object before it can be used.
/// </summary>
/// <param name=”sFirstName”>Student’s given name</param>
/// <param name=”sLastName”>Student’s family name</param>
public void InitStudent(string sFirstName, string sLastName)
{
this.sFirstName = sFirstName;
this.sLastName = sLastName;

}
// OutputBanner
/// <summary>
/// Output a banner before displaying student names
/// </summary>
public static void OutputBanner()
{
Console.WriteLine(“Aren’t we clever:”);
// Console.WriteLine(? what student do we use ?);

}

// OutputBannerAndName
/// <summary>
/// Output a banner followed by the current student’s name
/// </summary>
public void OutputBannerAndName()
{
// the class Student is implied but no this
// object is passed to the static method
OutputBanner();

// no this object is passed, but the current
// Student object is passed explicitly
OutputName(this, 5);

}

// OutputName
/// <summary>
/// Outputs the student’s name to the console
/// </summary>

182 Part III: Object-Based Programming

14_597043 ch08.qxd 9/20/05 1:59 PM Page 182

/// <param name=”student”>The student whose name you
/// want to display</param>
/// <param name=”nIndent”>Number of spaces to indent</param>
/// <returns>The string that was output</returns>
public static string OutputName(Student student,

int nIndent)
{
// here the Student object is referenced explicitly
string s = new String(‘ ‘, nIndent);
s += String.Format(“Student’s name is {0}”,

student.ToNameString());
Console.WriteLine(s);
return s;

}

// ToNameString
/// <summary>
/// Convert the student’s name into a string for display
/// </summary>
/// <returns>The stringified student name</returns>
public string ToNameString()
{
// here the current object is implicit -
// this could have been written:
// return this.sFirstName + “ “ + this.sLastName;
return sFirstName + “ “ + sLastName;

}
}

/// <summary>
/// Class to exercise the Student class
/// </summary>
public class Program
{
/// <summary>
/// The program starts here.
/// </summary>
/// <param name=”args”>Command-line arguments</param>
public static void Main(string[] args)
{
Student student = new Student();
student.InitStudent(“Madeleine”, “Cather”);

// output the banner and name
Student.OutputBanner();
string s = Student.OutputName(student, 5);
Console.WriteLine();

// output the banner and name again
student.OutputBannerAndName();

// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);

183Chapter 8: Class Methods

14_597043 ch08.qxd 9/20/05 1:59 PM Page 183

Console.Read();
}

}
}

The comments go just above the function they describe. They explain the
purpose of the function, the purpose of each argument, the type of data
returned, and a reference to a related function. In practice, these steps describe
the display as you add the function call Student.OutputName() to Main():

1. Visual Studio offers you a list of functions. After you select the one
you’re looking for, OutputName(), Visual Studio gives you the short
description from the <summary></summary>, as shown in Figure 8-6.
The text you provided appears just below the function declaration in the
yellow auto-complete box.

2. After you select or type the name of the function, Visual Studio displays
a description of the first parameter taken from the <param></param>
field along with its type. This appears in the same place, replacing the
overall summary information.

3. Visual Studio repeats the process for the second argument, nIndent.

Although they’re a little tedious to enter, documentation comments make
methods considerably easier to use.

In Visual Studio, the XML comment blocks are collapsible regions, so you can
hide the clutter while you work.

Figure 8-6:
Visual

Studio can
do a better

job of
describing

the function
and its

arguments
when armed

with the
extra XML
documen-

tation.

184 Part III: Object-Based Programming

14_597043 ch08.qxd 9/20/05 1:59 PM Page 184

Generating XML documentation
You can easily persuade Visual Studio to output all the documentation you
have provided in the form of an XML file.

This entire section is very technical stuff. If you don’t know what an XML file
is, this material won’t mean much to you. However, if you do understand XML
files, you’ll want to know about this feature.

To generate XML documentation, follow these steps:

1. Choose Project➪projectname Properties.

2. In the Build section, scroll down to the Output section and find the
property called XML Documentation File. Select the check box and
fill in a name.

I chose the name xmloutput.xml just because I didn’t know any better.
(You can also prefix a path to where you want the documentation to go.)

3. Save and close the Properties tab.

You can also access the project properties by right-clicking the project
name in the Solution Explorer.

4. Now choose Build➪Rebuild Solution to make sure that you get every-
thing rebuilt, regardless of whether it needs rebuilding.

5. Look in the bin\Debug subdirectory for the MixingFunctionsAnd-
MethodsWithXMLTags project (or wherever you specified for the XML
documentation file to go).

The new file xmloutput.xml describes all the functions that are docu-
mented with XML tags.

185Chapter 8: Class Methods

14_597043 ch08.qxd 9/20/05 1:59 PM Page 185

186 Part III: Object-Based Programming

14_597043 ch08.qxd 9/20/05 1:59 PM Page 186

Chapter 9

Stringing in the Key of C#
In This Chapter
� Pulling and twisting a string — but you still can’t push it

� Parsing strings read into the program

� Formatting output strings manually or using the String.Format() method

For many applications, you can treat a string like one of the built-in
value-type variable types such as int or char. Certain operations that

are otherwise reserved for these intrinsic types are available to strings, as
follows:

int i = 1; // declare and initialize an int
string s = “abc”; // declare and initialize a string

In other respects, shown as follows, a string is treated like a user-defined
class:

string s1 = new String();
string s2 = “abcd”;
int nLengthOfString = s2.Length;

Which is it — a value-type or a class? In fact, String is a class for which C#
offers special treatment because strings are so widely used in programs. For
example, the keyword string is synonymous with the class name String, as
shown in the following code:

String s1 = “abcd”; // assign a string literal to a String obj
string s2 = s1; // assign a String obj to a string variable

In this example, s1 is declared to be an object of class String (spelled with
an uppercase S), while s2 is declared as a simple string (spelled with a low-
ercase s). However, the two assignments demonstrate that string and
String are of the same (or compatible) types.

In fact, this same property is true of the other intrinsic variable types, to a
more limited extent. Even the lowly int type has a corresponding class
Int32, double has the class Double, and so on. The distinction here is that
string and String really are the same thing.

15_597043 ch09.qxd 9/20/05 2:01 PM Page 187

Performing Common Operations
on a String

C# programmers perform more operations on strings than Beverly Hills plastic
surgeons do on Hollywood hopefuls. Virtually every program uses the “addi-
tion” operator that’s used on strings, as shown in the following example:

string sName = “Randy”;
Console.WriteLine(“His name is “ + sName); // means concatenate

The String class provides this special operator. However, the String class
also provides other, more direct methods for manipulating strings. You can
see the complete list by looking up “String class” in the Help Index.

The union is indivisible, and so are strings
You need to know at least one thing that you didn’t learn before the 6th grade:
You can’t change a string object itself after it has been created. Even though
I may speak of modifying a string, C# doesn’t have an operation that modifies
the actual string object. Plenty of operations appear to modify the string
that you’re working with, but they always return the modified string as a
new object, instead.

For example, the operation “His name is “ + “Randy” changes neither of
the two strings, but generates a third string, “His name is Randy”. One
side effect of this behavior is that you don’t have to worry about someone
modifying a string “out from under you.”

Consider the following simplistic example program:

// ModifyString - the methods provided by the class String do not
// modify the object itself (s.ToUpper() does not
// modify s; rather, it returns a new string that
// has been converted)using System;
namespace ModifyString
{
class Program
{
public static void Main(string[] args)
{
// create a student object
Student s1 = new Student();
s1.sName = “Jenny”;
// now make a new object with the same name
Student s2 = new Student();
s2.sName = s1.sName;
// “changing” the name in the s1 object does not

188 Part III: Object-Based Programming

15_597043 ch09.qxd 9/20/05 2:01 PM Page 188

// change the object itself because ToUpper() returns
// a new string without modifying the original
s2.sName = s1.sName.ToUpper();
Console.WriteLine(“s1 - {0}, s2 - {1}”, s1.sName, s2.sName);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
// Student - we just need a class with a string in it
class Student
{

public string sName;
}

}

The Student objects s1 and s2 are set up so that their sName data member
points to the same string data. The call to the ToUpper() method converts the
string s1.sName to all uppercase characters. Normally, this would be a prob-
lem because both s1 and s2 point to the same object. However, ToUpper()
does not change sName — it creates a new, independent uppercase string.

The following output of the program is simple:

s1 - Jenny, s2 - JENNY
Press Enter to terminate...

This property of strings is called immutability (meaning, unchangeability).

The immutability of strings is also important for string constants. A string
such as “this is a string” is a form of a string constant, just like 1 is an
int constant. In the same way that I reuse my shirts to reduce the size of my
wardrobe, a compiler may choose to combine all accesses to the single con-
stant “this is a string”. Reusing string constants can reduce the foot-
print of the resulting program but would be impossible if a string could be
modified.

Equality for all strings:
The Compare() method
Numerous operations treat a string as a single object — for example, the
Compare() method. Compare(), with the following properties, compares two
strings as if they were numbers:

� If the left-hand string is greater than the right string, Compare() returns a 1.

� If the left-hand string is less than the right string, it returns a –1.

� If the two strings are equal, it returns a 0.

189Chapter 9: Stringing in the Key of C#

15_597043 ch09.qxd 9/20/05 2:01 PM Page 189

The algorithm works as follows when written in “notational C#” (that is, C#
without all the details, also known as pseudocode):

compare(string s1, string s2)
{
// loop through each character of the strings until
// a character in one string is greater than the
// corresponding character in the other string
foreach character in the shorter string
if (s1’s character > s2’s character when treated as a number)
return 1

if (s2’s character < s1’s character)
return -1

// Okay, every letter matches, but if the string s1 is longer
// then it’s greater
if s1 has more characters left
return 1

// if s2 is longer, it’s greater
if s2 has more characters left
return -1

// if every character matches and the two strings are the same
// length, then they are “equal”
return 0

}

Thus, “abcd” is greater than “abbd”, and “abcde” is greater than “abcd”.
More often than not, you don’t care whether one string is greater than the
other, but only whether the two strings are equal.

You do want to know which string is “bigger” when performing a sort.

The Compare() operation returns a 0 when two strings are identical. The fol-
lowing test program uses the equality feature of Compare() to perform a cer-
tain operation when the program encounters a particular string or strings.

BuildASentence prompts the user to enter lines of text. Each line is concate-
nated to the previous line to build a single sentence. This program exits if the
user enters the word EXIT, exit, QUIT, or quit:

// BuildASentence - the following program constructs sentences
// by concatenating user input until the user
// enters one of the termination characters -
//
// this program shows when you need to look for
// string equality
using System;
namespace BuildASentence
{
public class Program
{
public static void Main(string[] args)
{

190 Part III: Object-Based Programming

15_597043 ch09.qxd 9/20/05 2:01 PM Page 190

Console.WriteLine(“Each line you enter will be “
+ “added to a sentence until you “
+ “enter EXIT or QUIT”);

// ask the user for input; continue concatenating
// the phrases input until the user enters exit or
// quit (start with a null sentence)
string sSentence = “”;
for(;;)
{
// get the next line
Console.WriteLine(“Enter a string “);
string sLine = Console.ReadLine();
// exit the loop if it’s a terminator
if (IsTerminateString(sLine))
{
break;

}
// otherwise, add it to the sentence
sSentence = String.Concat(sSentence, sLine);
// let the user know how she’s doing
Console.WriteLine(“\nYou’ve entered: {0}”, sSentence);

}
Console.WriteLine(“\nTotal sentence:\n{0}”, sSentence);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// IsTerminateString - return a true if the source
// string is equal to any of the termination strings
public static bool IsTerminateString(string source)
{
string[] sTerms = {“EXIT”, “exit”, “QUIT”, “quit” };
// compare the string entered to each of the
// legal exit commands
foreach(string sTerm in sTerms)
{
// return a true if you have a match
if (String.Compare(source, sTerm) == 0)
{
return true;

}
}
return false;

}
}

}

After prompting the user for what the program expects, the program creates
an empty initial sentence string sSentence. From there, the program enters
an “infinite” loop.

191Chapter 9: Stringing in the Key of C#

15_597043 ch09.qxd 9/20/05 2:01 PM Page 191

The controls while(true) and for(;;) loop forever, or at least long enough
for some internal break or return to break you out. The two loops are equiv-
alent, and in practice, you’ll see them both. Looping is covered in Chapter 5.

BuildASentence prompts the user to enter a line of text, which the program
reads using the ReadLine() method. Having read the line, the program
checks to see whether it is a terminator by using the IsTerminateString()
function, which I wrote for the job. This function returns true if sLine is one
of the terminator phrases and false otherwise.

By convention, the name of a function that checks a property and returns a
true or false starts with Is, Has, Can, or some similar word. In this case,
the name of the function IsTerminateString() implies the question, “Is
sLine a terminate string?” Of course, this is a human convention only — C#
doesn’t care.

If sLine is not one of the terminate strings, it is concatenated to the end of
the sentence using the String.Concat() function. The program outputs the
immediate result just so the user can see what’s going on.

The IsTerminateString() method defines an array of strings sTerms. Each
member of this array is one of the strings you’re looking for. Any of these
strings causes the program to return a true, which causes the program to
quit faster than a programmer forced to write COBOL.

The program must include both “EXIT” and “exit” because Compare() con-
siders the two strings different by default. (The way the program is written,
these are the only two ways to spell exit. Strings such as “Exit” and “eXit”
would not be recognized as terminators.)

The IsTerminateString() function loops through each of the strings in the
array of target strings. If Compare() reports a match to any of the terminate
phrases, the function returns a true. If the function reaches the end of the
loop without a match, the function returns a false.

Iterating through an array is a great way to look for one of various possible
values.

Here’s an example run of the BuildASentence program:

Each line you entered will be added to a
sentence until you enter EXIT or QUIT
Enter a string
Programming with

You’ve entered: Programming with
Enter a string
C# is fun

You’ve entered: Programming with C# is fun

192 Part III: Object-Based Programming

15_597043 ch09.qxd 9/20/05 2:01 PM Page 192

Enter a string
(more or less)

You’ve entered: Programming with C# is fun (more or less)
Enter a string
EXIT

Total sentence:
Programming with C# is fun (more or less)
Press Enter to terminate...

I have flagged my input in bold to make the output easier to read.

Would you like your compares
with or without case?
The Compare() method used within IsTerminateString() considers
“EXIT” and “exit” to be different strings. However, the Compare() function
is overloaded with a second version that includes a third argument. This
argument indicates whether the comparison should ignore the letter case.
A true indicates “ignore.” (Chapter 7 discusses function overloading.)

The following version of IsTerminateString() returns a true whether the
string passed is uppercase, lowercase, or a combination of the two:

// IsTerminateString - return a true if the source string is equal
// to any of the termination characters
public static bool IsTerminateString(string source)
{
// indicate true if passed either exit or quit,
// irrespective of case
return (String.Compare(“exit”, source, true) == 0) ||

(String.Compare(“quit”, source, true) == 0);
}

This version of IsTerminateString() is simpler than the previous looping
version. The function doesn’t need to worry about case, and it can use a single
conditional expression because it now has only two options to consider.

This IsTerminateString() doesn’t even use an if statement. The bool
expression returns the calculated value directly to the user — it gets the if out.

What if I want to switch case?
I almost hate to bring it up, but you can use the switch() control to look for
a particular string. Usually, you use the switch() control to compare a

193Chapter 9: Stringing in the Key of C#

15_597043 ch09.qxd 9/20/05 2:01 PM Page 193

counting number to some set of possible values; however, the switch() does
work on string objects, as well. The following version of IsTerminate
String() uses the switch() control:

// IsTerminateString - return a true if the source
// string is equal to any of the termination strings
public static bool IsTerminateString(string source)
{
switch(source)
{
case “EXIT”:
case “exit”:
case “QUIT”:
case “quit”:

return true;
}
return false;

}
}

This approach works because you’re comparing only a limited number of
strings. The for() loop offers a much more flexible approach for searching
for string values. Using the case-less Compare() gives the program greater
flexibility in understanding the user.

Reading character input
A program can read from the keyboard one character at a time, but you have
to worry about newlines and so on. An easier approach reads a string and
then parses the characters out of the string.

Parsing characters out of a string is another topic I don’t like to mention for fear
that programmers will abuse this technique. In some cases, programmers are
too quick to jump down into the middle of a string and start pulling out what
they find there. This is particularly true of C++ programmers because that’s the
only way they could deal with strings, until the addition of a string class.

Your programs can read strings as if they were arrays of characters using
either the foreach control or the index operator []. The following
StringToCharAccess program demonstrates this technique:

// StringToCharAccess - access the characters in a string
// as if the string were an array
using System;
namespace StringToCharAccess
{
public class Program
{
public static void Main(string[] args)
{

194 Part III: Object-Based Programming

15_597043 ch09.qxd 9/20/05 2:01 PM Page 194

// read a string in from the keyboard
Console.WriteLine(“Input some random character string.”

+ “Make sure it’s completely random”);
string sRandom = Console.ReadLine();
// first output as a string
Console.WriteLine(“When output as a string: “ + sRandom);
Console.WriteLine();
// now output as a series of characters
Console.Write(“When output using the foreach: “);
foreach(char c in sRandom)
{
Console.Write(c);

}
Console.WriteLine(); // terminate the line
// put a blank line divider
Console.WriteLine();
// now output as a series of characters
Console.Write(“When output using the for: “);
for(int i = 0; i < sRandom.Length; i++)
{
Console.Write(sRandom[i]);

}
Console.WriteLine(); // terminate the line
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

This program first outputs some string picked totally at random. In fact, I
may have read it somewhere or done a tap dance on the keyboard. The pro-
gram first outputs the string using the conventional WriteLine(string)
method. It follows this by using the foreach to fetch each character in the
string, one at a time. Finally, it uses a for loop with the array brackets [] to
do the same thing. The results are as follows:

Input some random character string. Make sure it’s completely random
Stephen Davis is one handsome individual

When output as a string: Stephen Davis is one handsome individual

When output using the foreach: Stephen Davis is one handsome individual

When output using the for: Stephen Davis is one handsome individual
Press Enter to terminate...

In some cases, you don’t want to mess with any white space on either end of
the string. The term white space refers to the characters that don’t normally
display on the screen, for example, space, newline (or \n),and tab (\t).

195Chapter 9: Stringing in the Key of C#

15_597043 ch09.qxd 9/20/05 2:01 PM Page 195

You can use the Trim() method to trim off the edges of the string as follows:

// get rid of any extra spaces on either end of the string
sRandom = sRandom.Trim();

String.Trim() returns a new string. The previous version of the string with
the extra white space is lost and no longer usable.

Parsing numeric input
The ReadLine() function used for reading from the console returns a string
object. A program that expects numeric input must convert this string. C#
provides just the conversion tool you need in the Convert class. This class
provides a conversion method from string to each built-in variable type.
Thus, the following code segment reads a number from the keyboard and
stores it into an int variable:

string s = Console.ReadLine(); // keyboard input is string data
int n = Convert.Int32(s); // but you know it’s meant to be a number

The other conversion methods are a bit more obvious: ToDouble(),
ToFloat(), and ToBoolean().

ToInt32() refers to a 32-bit, signed integer (32 bits is the size of a normal int),
so this is the conversion function for ints. ToInt64() is the size of a long.

When Convert() encounters an unexpected character type, it can generate
unexpected results. Thus, you must know for sure what type of data you’re
processing. (Bonus Chapter 1 on the CD covers dealing with unexpected
occurrences, called exceptions.)

The following function returns a true if the string passed to it consists of only
digits. You can call this function prior to converting into a type of integer,
assuming that a sequence of nothing but digits is probably a legal number.

You would need to include the decimal point for floating point variables and
include a leading minus sign for negative numbers — but hey, you get the idea.

Here’s the function:

// IsAllDigits - return a true if all the characters
// in the string are digits
public static bool IsAllDigits(string sRaw)
{
// first get rid of any benign characters
// at either end; if there’s nothing left
// then we don’t have a number
string s = sRaw.Trim(); // ignore whitespace on either side

196 Part III: Object-Based Programming

15_597043 ch09.qxd 9/20/05 2:01 PM Page 196

if (s.Length == 0)
{
return false;

}
// loop through the string
for(int index = 0; index < s.Length; index++)
{
// a non-digit indicates that the string
// probably is not a number
if (Char.IsDigit(s[index]) == false)
{
return false;

}
}
// no non-digits found; it’s probably OK
return true;

}

The function IsAllDigits() first removes any harmless white space at
either end of the string. If nothing is left, the string was blank and could not
be an integer. The function then loops through each character in the string. If
any of these characters turns out to be a nondigit, the function returns a
false, indicating that the string is probably not a number. If this function
returns a true, the probability is high that the string can be converted into
an integer successfully.

The following code sample inputs a number from the keyboard and prints it
back out to the console. (I omitted the IsAllDigits() function from the list-
ing to save space.)

// IsAllDigits - demonstrate the IsAllDigits method
using System;
namespace IsAllDigits
{
class Program
{
public static void Main(string[] args)
{
// input a string from the keyboard
Console.WriteLine(“Enter an integer number”);
string s = Console.ReadLine();
// first check to see if this could be a number
if (!IsAllDigits(s))
{
Console.WriteLine(“Hey! That isn’t a number”);

}
else
{
// convert the string into an integer
int n = Int32.Parse(s);
// now write out the number times 2

197Chapter 9: Stringing in the Key of C#

15_597043 ch09.qxd 9/20/05 2:01 PM Page 197

Console.WriteLine(“2 * {0} = {1}”, n, 2 * n);
}
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The program reads a line of input from the console keyboard. If IsAllDigits()
returns a false, the program alerts the user. If not, the program converts the
string into a number using an alternative to Convert.ToInt32() — the Int32.
Parse(s) call. Finally, the program outputs both the number and two times
the number (the latter to prove that the program did, in fact, convert the
string as advertised).

The output from a sample run of the program appears as follows:

Enter an integer number
1A3
Hey! That isn’t a number
Press Enter to terminate...

You could let Convert try to convert garbage and handle any exception it
may decide to throw. However, a better-than-even chance exists that it won’t
throw an exception, but just return incorrect results — for example, returning
1 when presented with 1A3. It’s best to validate input data yourself.

Handling a series of numbers
Often, a program receives a series of numbers in a single line from the key-
board. Using the String.Split() method, you can easily break the string
into a number of substrings, one for each number, and parse them separately.

The Split() function chops up a single string into an array of smaller strings
using some delimiter. For example, if you tell Split() to divide a string using a
comma (,) as the delimiter, “1,2,3” becomes three strings, “1”, “2”, and “3”.

The following program uses the Split() method to input a sequence of num-
bers to be summed:

// ParseSequenceWithSplit - input a series of numbers
// separated by commas, parse them into
// integers, and output the sum
namespace ParseSequenceWithSplit
{
using System;
class Program
{

198 Part III: Object-Based Programming

15_597043 ch09.qxd 9/20/05 2:01 PM Page 198

public static void Main(string[] args)
{
// prompt the user to input a sequence of numbers
Console.WriteLine(

“Input a series of numbers separated by commas:”);
// read a line of text
string input = Console.ReadLine();
Console.WriteLine();
// now convert the line into individual segments
// based upon either commas or spaces
char[] cDividers = {‘,’, ‘ ‘};
string[] segments = input.Split(cDividers);
// convert each segment into a number
int nSum = 0;
foreach(string s in segments)
{
// (skip any empty segments)
if (s.Length > 0)
{
// skip strings that aren’t numbers
if (IsAllDigits(s))
{
// convert the string into a 32-bit int
int num = Int32.Parse(s);
Console.WriteLine(“Next number = {0}”, num);
// add this number into the sum
nSum += num;

}
}

}
// output the sum
Console.WriteLine(“Sum = {0}”, nSum);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// IsAllDigits - return a true if all of the characters
// in the string are digits
public static bool IsAllDigits(string sRaw)
{
// first get rid of any benign characters
// at either end; if there’s nothing left
// then we don’t have a number
string s = sRaw.Trim();
if (s.Length == 0)
{
return false;

}
// loop through the string
for(int index = 0; index < s.Length; index++)
{
// a non-digit indicates that the string
// probably is not a number

199Chapter 9: Stringing in the Key of C#

15_597043 ch09.qxd 9/20/05 2:01 PM Page 199

if (Char.IsDigit(s[index]) == false)
{
return false;

}
}
// no non-digit found; it’s probably OK
return true;

}
}

}

The ParseSequenceWithSplit program begins by reading a string from the
keyboard. The program passes the cDividers array of char to the Split()
method to indicate that the comma and the space are the characters used to
separate individual numbers.

The program iterates through each of the smaller “subarrays” created by
Split() using the foreach control. The program skips any zero-length subar-
rays (this would result from two dividers in a row). The program next uses the
IsAllDigits() method to make sure that the string contains a number. Valid
numbers are converted into integers and then added to an accumulator, nSum.
Invalid numbers are ignored. (I chose not to generate an error message.)

Here’s the output of a typical run:

Input a series of numbers separated by commas:
1,2, a, 3 4

Next number = 1
Next number = 2
Next number = 3
Next number = 4
Sum = 10
Press Enter to terminate...

The program skips through the list, accepting either commas, spaces, or both
as separators. It successfully skips over the a to generate the result of 10. In a
real-world program, however, you probably don’t want to skip over incorrect
input without comment. You almost always want to draw the user’s attention
to garbage in the input stream.

Controlling Output Manually
Controlling the output from programs is an important aspect of string manip-
ulation. Face it: The output from the program is what the user sees. No matter
how elegant the internal logic of the program may be, the user probably won’t
be impressed if the output looks shabby.

200 Part III: Object-Based Programming

15_597043 ch09.qxd 9/20/05 2:01 PM Page 200

The String class provides help in directly formatting string data for output.
The following sections examine the Trim(), Pad(), PadRight(), PadLeft(),
Substring(), and Concat() methods.

Using the Trim() and Pad() methods
You can use the Trim() method to remove unwanted characters from either
end of a string. Typically, you use this method to remove spaces so that
output strings line up correctly.

Another common method for formatting output is to use the Pad functions,
which add characters to either end of a string to expand the string to some
predetermined length. For example, you may add spaces to the left or right of
a string to left- or right-justify it, or you can add “*” characters to the left of a
currency number.

The following small AlignOutput program uses both of these functions to
trim up and justify a series of names:

// AlignOutput - left justify and align a set of strings
// to improve the appearance of program output
namespace AlignOutput
{
using System;
class Program
{
public static void Main(string[] args)
{
string[] names = {“Christa “,

“ Sarah”,
“Jonathan”,
“Sam”,
“ Schmekowitz “};

// first output the names as they start out
Console.WriteLine(“The following names are of “

+ “different lengths”);

foreach(string s in names)
{
Console.WriteLine(“This is the name ‘{0}’ before”, s);

}
Console.WriteLine();

// this time, fix the strings so they are
// left justified and all the same length
string[] sAlignedNames = TrimAndPad(names);
// finally output the resulting padded, justified strings
Console.WriteLine(“The following are the same names “

+ “normalized to the same length”);

201Chapter 9: Stringing in the Key of C#

15_597043 ch09.qxd 9/20/05 2:01 PM Page 201

foreach(string s in sAlignedNames)
{
Console.WriteLine(“This is the name ‘{0}’ afterwards”, s);

}
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// TrimAndPad - given an array of strings, trim whitespace from
// both ends and then repad the strings to align
// them with the longest member
public static string[] TrimAndPad(string[] strings)
{
// copy the source array into an array that you can manipulate
string[] stringsToAlign = new String[strings.Length];
// first remove any unnecessary spaces from either
// end of the names
for(int i = 0; i < stringsToAlign.Length; i++)
{
stringsToAlign[i] = strings[i].Trim();

}
// now find the length of the longest string so that
// all other strings line up with that string
int nMaxLength = 0;
foreach(string s in stringsToAlign)
{
if (s.Length > nMaxLength)
{
nMaxLength = s.Length;

}
}
// finally justify all the strings to the length
// of the maximum string
for(int i = 0; i < stringsToAlign.Length; i++)
{
stringsToAlign[i] = stringsToAlign[i].PadRight(nMaxLength + 1);

}
// return the result to the caller
return stringsToAlign;

}
}

}

AlignOutput defines an array of names of uneven alignment and length.
(You could just as easily write the program to read these names from the con-
sole or from a file.) The Main() function first displays the names as is.
Main() then aligns the names using the TrimAndPad() method before redis-
playing the resulting trimmed up strings, as follows:

The following names are of different lengths
This is the name ‘Christa ‘ before
This is the name ‘ Sarah’ before
This is the name ‘Jonathan’ before

202 Part III: Object-Based Programming

15_597043 ch09.qxd 9/20/05 2:01 PM Page 202

This is the name ‘Sam’ before
This is the name ‘ Schmekowitz ‘ before

The following are the same names rationalized to the same length
This is the name ‘Christa ‘ afterwards
This is the name ‘Sarah ‘ afterwards
This is the name ‘Jonathan ‘ afterwards
This is the name ‘Sam ‘ afterwards
This is the name ‘Schmekowitz ‘ afterwards

The TrimAndPad() method begins by making a copy of the input strings
array. In general, a function that operates on parameters passed to it should
return a new modified value rather than modify the value passed. This is sort
of like when I borrow my brother-in-law’s pickup: He expects to get it back
looking the same as when it left.

TrimAndPad() first loops through the array, calling Trim() on each element
to remove unneeded white space on either end. The function loops again
through the array to find the longest member. The function loops one final
time, calling PadRight() to expand each array to match the length of the
longest member in the array.

PadRight(10) expands a string to be at least 10 characters long. For example,
PadRight(10) would add four spaces to the right of a six-character string.

TrimAndPad() returns the array of trimmed and padded strings for output.
Main() iterates through this list, displaying each of the now-gussied-up
strings that you see. Voilà.

Using the Concatenate function
You often face the problem of breaking up a string or inserting some sub-
string into the middle of another. Replacing one character with another is
most easily handled with the Replace() method, as follows:

string s = “Danger NoSmoking”;
a.Replace(s, ‘ ‘, ‘!’)

This example converts the string into “Danger!NoSmoking”.

Replacing all appearances of one character (in this case, a space) with
another (an exclamation mark) is especially useful when generating comma-
separated strings for easier parsing. However, the more common and more
difficult case involves breaking a single string into substrings, manipulating
them separately, and then recombining them into a single, modified string.

203Chapter 9: Stringing in the Key of C#

15_597043 ch09.qxd 9/20/05 2:01 PM Page 203

For example, consider the following RemoveSpecialChars() function, which
removes all instances of a set of special characters from a given string. This
example RemoveWhiteSpace program uses the Replace() function to
remove white space (spaces, tabs, and newlines) from a string:

// RemoveWhiteSpace - define a RemoveSpecialChars() function
// which can remove any of a set of chars
// from a given string. Use this function
// to remove white space from a sample string.
/
namespace RemoveWhiteSpace
{
using System;
public class Program
{
public static void Main(string[] args)
{
// define the whitespace characters
char[] cWhiteSpace = {‘ ‘, ‘\n’, ‘\t’};
// start with a string embedded with whitespace
string s = “ this is a\nstring”; // contains spaces & newline
Console.WriteLine(“before:” + s);
// output the string with the whitespace missing
Console.WriteLine(“after:” + RemoveSpecialChars(s, cWhiteSpace));
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// RemoveSpecialChars - remove every occurrence of the specified
// characters from the string
public static string RemoveSpecialChars(string sInput, char[] cTargets)
{
string sOutput = sInput;
for(;;)
{
// find the offset of the character; exit the loop
// if there are no more
int nOffset = sOutput.IndexOfAny(cTargets);
if (nOffset == -1)
{
break;

}
// break the string into the part prior to the
// character and the part after the character
string sBefore = sOutput.Substring(0, nOffset);
string sAfter = sOutput.Substring(nOffset + 1);
// now put the two substrings back together with the
// character in the middle missing
sOutput = String.Concat(sBefore, sAfter);

}
return sOutput;

}
}

}

204 Part III: Object-Based Programming

15_597043 ch09.qxd 9/20/05 2:01 PM Page 204

The key to this program is the RemoveSpecialChars() function. This func-
tion returns a string consisting of the input string, sInput, with every one of
a set of characters contained in the array cTargets removed. To better
understand this function, assume that the string was “ab,cd,e” and that the
array of special characters was the single character ‘,’.

The RemoveSpecialChars() function enters a loop from which it does not
return until every comma has been removed. The IndexOfAny() function
returns the index within the array of the first comma that it can find. A return
value of –1 indicates that no comma was found.

After the first call, IndexOfAny() returns a 2 (‘a’ is at index 0, ‘b’ is 1, and
‘,’ is 2). The next two functions break the string apart at the index. Sub-
string(0, 2) creates a substring consisting of two characters starting with
index 0: “ab”. The second call to Substring(3) creates a string consisting of
the characters starting at index 3 and continuing to the end of the string:
“cd,e”. (It’s the “+ 1” that skips the comma.) The Concat() function puts
the two substrings back together to create “abcd,e”.

Control passes back up to the top of the loop. The next iteration finds the
comma at index 4. The concatenated string is “abcde”. Because no comma is
left, the index returned on the final pass is –1.

The RemoveWhiteSpace program prints out a string containing several forms
of white space. The program then uses the RemoveSpecialChars() function
to strip out white space characters. The output from this program appears as
follows:

before: this is a
string
after:thisisastring
Press Enter to terminate...

Let’s Split() that concatenate program
The RemoveWhiteSpace program demonstrates the use of the Concat() and
IndexOf() methods; however, it doesn’t use the most efficient approach. As
usual, a little examination reveals a more efficient approach using our old
friend Split(). You can find this program on the enclosed CD-ROM under
RemoveWhiteSpaceWithSplit. The code is as follows:

// RemoveWhiteSpaceWithSplit - replaces RemoveSpecialChars() function
// from RemoveWhiteSpace program
// RemoveSpecialChars - remove every occurrence of the
// specified characters from the string
public static string RemoveSpecialChars(string sInput, char[] cTargets)
{
// split the input string up using the target

205Chapter 9: Stringing in the Key of C#

15_597043 ch09.qxd 9/20/05 2:01 PM Page 205

// characters as the delimiters
string[] sSubStrings = sInput.Split(cTargets);
// sOutput will contain the eventual output information
string sOutput = “”;
// loop through the substrings originating from the split
foreach(string subString in sSubStrings)
{
sOutput = String.Concat(sOutput, subString);

}
return sOutput;

}

This version uses the Split() function to break the input string into a set of
substrings using the characters to be removed as delimiters. The delimiter is
not included in the substrings created, which has the effect of removing the
character(s). The logic is much simpler and less error-prone.

The foreach loop in the second half of the program puts the pieces back
together again. The output from the program is unchanged.

Controlling String.Format()
The String class also provides the Format() method for formatting output,
especially the output of numbers. In its simplest form, Format() allows the
insertion of string, numeric, or boolean input in the middle of a format string.
For example, consider the following call:

string myString = String.Format(“{0} times {1} equals {2}”, 2, 3, 2*3);

The first argument to Format() is known as the format string — the quoted
string you see. The {n} items in the middle of the format string indicate that
the nth argument following the format string is to be inserted at that point.
{0} refers to the first argument (in this case, the value 2), {1} refers to the
next (3), and so on.

This returns a string, myString. The resulting string is as follows:

“2 times 3 equals 6”

Unless otherwise directed, Format() uses a default output format for each
argument type. Format() enables you to affect the output format by includ-
ing modifiers in the placeholders. See Table 9-1 for a listing of some of these
controls. For example, {0:E6} says, “Output the number in exponential form,
using six spaces for the fractional part.”

206 Part III: Object-Based Programming

15_597043 ch09.qxd 9/20/05 2:01 PM Page 206

Table 9-1 Format Controls Using String.Format()
Control Example Result Notes

C — currency {0:C} of 123.456 $123.45 The currency sign
depends on the
localization setting.

{0:C} of -123.456 ($123.45)

D — decimal {0:D5} of 123 00123 Integers only.

E — exponential {0:E} of 123.45 1.2345E+002 Also known as scien-
tific notation.

F — fixed {0:F2} of 123.4567 123.45 The number after the F
indicates the number
of digits after the deci-
mal point.

N — number {0:N} of 123456.789 123,456.79 Adds commas and
rounds off to nearest
100th.

{0:N1} of 123456.789 123,456.8 Controls the number of
digits after the decimal
point.

{0:N0} of 123456.789 123,457

X — hexadecimal {0:X} of 123 0x7B 7B hex = 123 decimal
(integers only).

{0:0...} {0:000.00} of 12.3 012.30 Forces a 0 if a digit is
not already present.

{0:#...} {0:###.##} of 12.3 12.3 Forces the space to be
left blank; no other
field can encroach on
the three digits to the
left and two digits after
the decimal point
(useful for maintain-
ing decimal point
alignment).

{0:##0.0#} of 0 0.0 Combining the # and
zeros forces space to
be allocated by the #s
and forces at least one
digit to appear, even if
the number is 0.

(continued)

207Chapter 9: Stringing in the Key of C#

15_597043 ch09.qxd 9/20/05 2:01 PM Page 207

Table 9-1 (continued)
Control Example Result Notes

{0:# or 0%} {0:#00.#%} of .1234 12.3% The % displays the
number as a percent-
age (multiplies by 100
and adds the % sign).

{0:#00.#%} of .0234 02.3%

These format controls can seem a bit bewildering. (I didn’t even mention the
detailed currency and date controls.) Explore the topic “format specifiers,
C#” in the Help index for more information. To help you wade through these
options, the following OutputFormatControls program enables you to enter
a floating point number followed by a control sequence. The program then
displays the number using the specified Format() control:

// OutputFormatControls - allow the user to reformat input
// numbers using a variety of format
// controls input at run time
namespace OutputFormatControls
{
using System;
public class Program
{
public static void Main(string[] args)
{
// keep looping - inputting numbers until the user
// enters a blank line rather than a number
for(;;)
{
// first input a number - terminate when the user
// inputs nothing but a blank line
Console.WriteLine(“Enter a double number”);
string sNumber = Console.ReadLine();
if (sNumber.Length == 0)
{
break;

}
double dNumber = Double.Parse(sNumber);
// now input the control codes; split them
// using spaces as dividers
Console.WriteLine(“Enter the control codes”

+ “ separated by a blank”);
char[] separator = {‘ ‘};
string sFormatString = Console.ReadLine();
string[] sFormats = sFormatString.Split(separator);
// loop through the individual format controls
foreach(string s in sFormats)
{

208 Part III: Object-Based Programming

15_597043 ch09.qxd 9/20/05 2:01 PM Page 208

if (s.Length != 0)
{
// create a complete format control
// from the control letters entered earlier
string sFormatCommand = “{0:” + s + “}”;
// output the number entered using the
// reconstructed format control
Console.Write(

“The format control {0} results in “, sFormatCommand);
try
{
Console.WriteLine(sFormatCommand, dNumber);

}
catch(Exception)
{
Console.WriteLine(“<illegal control>”);

}
Console.WriteLine();

}
}

}
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The OutputFormatControls program continues to read floating point num-
bers into a variable dNumber until the user enters a blank line. Notice that the
program does not include any tests to determine whether the input is a legal
floating point number. Just assume that the user is smart enough to know
what a number looks like (a dangerous assumption!).

The program then reads a series of control strings separated by spaces. Each
control is then combined with a “{0}” string (the number before the colon,
which corresponds to the placeholder in the format string) into the variable
sFormatCommand. For example, if you entered N4, the program would store
the control “{0:N4}”. The following statement writes the number dNumber
using the newly constructed sFormatCommand:

Console.WriteLine(sFormatCommand, dNumber);

In the case of our lowly N4, the command would be rendered as follows:

Console.WriteLine(“{0:N4}”, dNumber);

209Chapter 9: Stringing in the Key of C#

15_597043 ch09.qxd 9/20/05 2:01 PM Page 209

Typical output from the program appears as follows (I boldfaced my input):

Enter a double number
12345.6789
Enter the control codes separated by a blank
C E F1 N0 0000000.00000
The format control {0:C} results in $12,345.68

The format control {0:E} results in 1.234568E+004

The format control {0:F1} results in 12345.7

The format control {0:N0} results in 12,346

The format control {0:0000000.00000} results in 0012345.67890

Enter a double number
.12345
Enter the control codes separated by a blank
00.0%
The format control {0:00.0%} results in 12.3%
Enter a double number

Press Enter to terminate...

When applied to the number 12345.6789, the control N0 adds commas in the
proper place (the N part) and lops off everything after the decimal point (the
0 portion) to render 12,346 (the last digit was rounded off, not truncated).

Similarly, when applied to 0.12345, the control 00.0% outputs 12.3%. The per-
cent sign multiplies the number by 100 and adds %. The 00.0 indicates that
the output should include at least two digits to the left of the decimal point
and only one digit after the decimal point. The number 0.01 is displayed as
01.0% using the same 00.0% control.

The mysterious try...catch catches any errors that spew forth in the event
you enter an illegal format command such as a D, which stands for decimal. I
cover exceptions in Bonus Chapter 1 on the CD.

210 Part III: Object-Based Programming

15_597043 ch09.qxd 9/20/05 2:01 PM Page 210

Part IV
Object-Oriented

Programming

16_597043 pt04.qxd 9/20/05 2:03 PM Page 211

In this part . . .

Object-oriented programming is the most hyped term
in the programming world — dot-com and business-

to-business e-commerce eclipsed it for a year or two, but
their high-flying fortunes have ’er, subsided, since the
dot-com crash of 2001.

C++ claims to be object-oriented — that’s what differenti-
ated it from good ol’ C. Java is definitely object-oriented,
as are a hundred or so other languages that were invented
during the last ten years. But what is object-oriented? Do I
have it? Can I get it? Do I want it?

Part IV demonstrates the features of C# that make it
object-oriented to the core. Not only will you be program-
ming objects, but you’ll also take possession of the keys
to powerful, flexible program designs — all right here in
Part IV!

16_597043 pt04.qxd 9/20/05 2:03 PM Page 212

Chapter 10

Object-Oriented Programming —
What’s It All About?

In This Chapter
� Making nachos

� Reviewing the basics of object-oriented programming

� Getting a handle on abstraction and classification

� Understanding why object-oriented programming is important

This chapter answers the musical question, “What are the concepts behind
object-oriented programming and how do they differ from the functional

concepts covered in Part II of this book?”

Object-Oriented Concept #1 —
Abstraction

Sometimes when my son and I are watching football, I whip up a terribly
unhealthy batch of nachos. I dump some chips on a plate; throw on some
beans, cheese, and lots of jalapeños; and nuke the whole mess in the
microwave oven for a few minutes.

To use my microwave, I open the door, throw the stuff in, and punch a few
buttons on the front. After a few minutes, the nachos are done. (I try not to
stand in front of the microwave while it’s working lest my eyes start glowing
in the dark.)

17_597043 ch10.qxd 9/20/05 2:04 PM Page 213

Now think for a minute about all the things I don’t do to use my microwave:

� I don’t rewire or change anything inside the microwave to get it to work.
The microwave has an interface — the front panel with all the buttons
and the little time display — that lets me do everything I need.

� I don’t have to reprogram the software used to drive the little processor
inside my microwave, even if I cooked a different dish the last time I
used the microwave.

� I don’t look inside my microwave’s case.

� Even if I were a microwave designer and knew all about the inner work-
ings of a microwave, including its software, I still wouldn’t think about all
that stuff while I was using it to heat my nachos.

These are not profound observations. You can deal with only so much stress
in your life. To reduce the number of things that you deal with, you work at a
certain level of detail. In object-oriented (OO) computerese, the level of detail
at which you are working is called the level of abstraction. To introduce
another OO term while I have the chance, I abstract away the details of the
microwave’s innards.

Happily, computer scientists — and thousands of geeks — have invented object
orientation and numerous other concepts that reduce the level of complexity
at which programmers have to work. Using powerful abstractions makes the
job simpler and far less error-prone than it used to be. In a sense, that’s what
the past half century or so of computing progress has been about: managing
ever more complex concepts and structures with ever less errors.

When I’m working on nachos, I view my microwave oven as a box. (As I’m trying
to knock out a snack, I can’t worry about the innards of the microwave oven
and still follow the Cowboys on the tube.) As long as I use the microwave only
through its interface (the keypad), nothing I can do should cause the microwave
to enter an inconsistent state and crash or, worse, turn my nachos — or my
house — into a blackened, flaming mass.

Preparing functional nachos
Suppose I were to ask my son to write an algorithm for how Dad makes
nachos. After he understood what I wanted, he would probably write, “Open
a can of beans, grate some cheese, cut the jalapeños,” and so on. When he
came to the part about microwaving the concoction, he would write some-
thing like, “Cook in the microwave for five minutes” (on a good day).

That description is straightforward and complete. But it’s not the way a func-
tional programmer would code a program to make nachos. Functional pro-
grammers live in a world devoid of objects such as microwave ovens and

214 Part IV: Object-Oriented Programming

17_597043 ch10.qxd 9/20/05 2:04 PM Page 214

other appliances. They tend to worry about flow charts with their myriad
functional paths. In a functional solution to the nachos problem, the flow of
control would pass through my finger to the front panel and then to the inter-
nals of the microwave. Pretty soon, flow would be wiggling around through
complex logic paths about how long to turn on the microwave tube and
whether to sound the “come and get it” tone.

In that world of functional programming, you can’t easily think in terms of
levels of abstraction. There are no objects and no abstractions behind which
to hide inherent complexity.

Preparing object-oriented nachos
In an object-oriented approach to making nachos, I would first identify the
types of objects in the problem: chips, beans, cheese, jalapeños, and an oven.
Then, I would begin the task of modeling those objects in software, without
regard for the details of how they will be used in the final program. For exam-
ple, I can model cheese as an object pretty much in isolation from the other
objects, and then combine it with the beans, the chips, the jalapeños, and the
oven and make them interact.

While I do that, I’m said to be working (and thinking) at the level of the basic
objects. I need to think about making a useful oven, but I don’t have to think
about the logical process of making nachos — yet. After all, the microwave
designers didn’t think about the specific problem of my making a snack.
Rather, they set about solving the problem of designing and building a useful
microwave.

After I have successfully coded and tested the objects I need, I can ratchet up
to the next level of abstraction. I can start thinking at the nacho-making level,
rather than the microwave-making level.

At this point, I can pretty much translate my son’s instructions directly into
C# code.

Object-Oriented Concept #2 —
Classification

Critical to the concept of abstraction is that of classification. If I were to ask
my son, “What’s a microwave?” he would probably say, “It’s an oven that. . . .”
If I then asked, “What’s an oven?” he might reply, “It’s a kitchen appliance
that. . . .” If I then asked “What’s a kitchen appliance?” he would probably say,
“Why are you asking so many stupid questions?”

215Chapter 10: Object-Oriented Programming — What’s It All About?

17_597043 ch10.qxd 9/20/05 2:04 PM Page 215

The answers my son gave in my example questioning stem from his under-
standing of our particular microwave as an example of the type of things
called microwave ovens. In addition, my son sees microwave ovens as just a
special type of oven, which itself is just a special type of kitchen appliance.

In object-oriented computerese, my microwave is an instance of the class
microwave. The class microwave is a subclass of the class oven, and the
class oven is a subclass of the class kitchen appliance.

Humans classify. Everything about our world is ordered into taxonomies. We
do this to reduce the number of things we have to remember. Take, for exam-
ple, the first time you saw an SUV. The advertisement probably called the
SUV “revolutionary, the likes of which have never been seen.” But you and I
know that just isn’t so. I like the looks of some SUVs (others need to go back
to take another crack at it), but hey, an SUV is a car. As such, it shares all (or
at least most of) the properties of other cars. It has a steering wheel, seats, a
motor, brakes, and so on. I bet I could even drive one without reading the
user’s manual first.

I don’t have to clutter my limited storage with all the things that an SUV has in
common with other cars. All I have to remember is “an SUV is a car that . . .”
and tack on those few things that are unique to an SUV (like the price tag). I
can go further. Cars are a subclass of wheeled vehicles along with other mem-
bers, such as trucks and pickups. Maybe wheeled vehicles are a subclass of
vehicles, which include boats and planes — and so on.

Why Classify?
Why should you classify? It sounds like a lot of trouble. Besides, people have
been using the functional approach for so long, so why change now?

Designing and building a microwave oven specifically for this one problem may
seem easier than building a separate, more generic oven object. Suppose, for
example, that I want to build a microwave to cook nachos and nachos only. I
would not need to put a front panel on it, other than a START button. I always
cook nachos the same amount of time. I could dispense with all that DEFROST
and TEMP COOK nonsense. The oven only needs to hold one flat little plate.
Three cubic feet of space would be wasted on nachos.

For that matter, I can dispense with the concept of “microwave oven” alto-
gether. All I really need is the guts of the oven. Then, in the recipe, I put the
instructions to make it work: “Put nachos in the box. Connect the red wire to

216 Part IV: Object-Oriented Programming

17_597043 ch10.qxd 9/20/05 2:04 PM Page 216

the black wire. Bring the radar tube up to about 3,000 volts. Notice a slight
hum. Try not to stand too close if you intend to have children.” Stuff like that.

But the functional approach has the following problems:

� It’s too complex. I don’t want the details of oven building mixed into the
details of nacho building. If I can’t define the objects and pull them out
of the morass of details to deal with separately, I must deal with all the
complexities of the problem at the same time.

� It’s not flexible. Someday, I may need to replace the microwave oven
with some other type of oven. I should be able to do so as long as the
two ovens have the same interface. Without being clearly delineated and
developed separately, one object type can’t be cleanly removed and
replaced with another.

� It’s not reusable. Ovens are used to make lots of different dishes. I don’t
want to create a new oven every time I encounter a new recipe. Having
solved a problem once, I’d like to be able to reuse the solution in other
places within my program. If I’m really lucky, I may be able to reuse it in
future programs as well.

Object-Oriented Concept #3 —
Usable Interfaces

An object must be able to project an external interface that is sufficient but as
simple as possible. This is sort of the reverse of Concept #4 (described in the
next section). If the device interface is insufficient, users may start ripping the
top off the device, in direct violation of the laws of God and Society — or at
least the liability laws of the Great State of Texas. And believe me, you do not
want to violate the laws of the Great State of Texas. On the flip side, if the
device interface is too complex, no one will buy the device — or at least, no
one will use all its features.

People complain constantly that their VCRs are too complex (this is less of a
problem with today’s on-screen controls). These devices have too many but-
tons with too many different functions. Often, the same button has different
functions, depending on the state of the machine. In addition, no two VCRs
seem to have the same interface. For whatever reason, the VCR projects an
interface that is too difficult and too nonstandard for most people to use.

217Chapter 10: Object-Oriented Programming — What’s It All About?

17_597043 ch10.qxd 9/20/05 2:04 PM Page 217

Compare this with an automobile. It would be difficult to argue that a car is
less complicated than a VCR. However, people don’t seem to have much trou-
ble driving them.

All automobiles offer more or less the same controls in more or less the same
place. For example (this is a true story), my sister once had a car — need I
say, a French car — with the headlight control on the left-hand side of the
steering wheel, where the turn signal handle normally would be. You pushed
down on the light lever to turn off the lights, and you raised the lever to turn
them on. This may seem like a small difference, but I never did learn to turn
left in that car at night without turning off the lights.

Well-designed autos do not use the same control to perform more than one
operation, depending on the state of the car. I can think of only one exception
to this rule: Some buttons on most cruise controls are overloaded with multi-
ple functions.

Object-Oriented Concept #4 —
Access Control

A microwave oven must be built so that no combination of keystrokes that
you can enter on the front keypad can cause the oven to hurt you. Certainly,
some combinations don’t do anything. However, no sequence of keystrokes
should do the following:

� Break the device: You may be able to put the device into some sort of
strange state in which it won’t do anything until you reset it, like throw-
ing an internal breaker. However, you shouldn’t be able to break the
device by using the front panel — unless, of course, you throw it to the
ground in frustration. The manufacturer of such a device would proba-
bly have to send out some type of fix for a device like that.

� Cause the device to catch fire and burn down the house: Now, as bad
as it may be for the device to break itself, catching fire is much worse.
We live in a litigious society. The manufacturer’s corporate officers
would likely end up in jail, especially if I have anything to say about it.

However, to enforce these two rules, you have to take some responsibility.
You can’t make modifications to the inside of the device.

Almost all kitchen devices of any complexity, including microwave ovens,
have a small seal to keep consumers from reaching inside the device. If that

218 Part IV: Object-Oriented Programming

17_597043 ch10.qxd 9/20/05 2:04 PM Page 218

seal is broken, indicating that the cover of the device has been removed, the
manufacturer no longer bears responsibility. If you modify the internals of an
oven, you are responsible if it subsequently catches fire and burns down the
house.

Similarly, a class must be able to control access to its data members. No
sequence of calls to class members should cause your program to crash. The
class cannot possibly ensure this if external elements have access to the
internal state of the class. The class must be able to keep critical data mem-
bers inaccessible to the outside world.

How Does C# Support Object-Oriented
Concepts?

Okay, how does C# implement object-oriented programming? In a sense, this
is the wrong question. C# is an object-oriented language; however, it doesn’t
implement object-oriented programming — the programmer does. You can
certainly write a non-object-oriented program in C# or any other language
(by, for instance, writing all of Microsoft Word in Main()). Something like
“you can lead a horse to water” comes to mind. But you can easily write an
object-oriented program in C#.

C# provides the following features necessary for writing object-oriented
programs:

� Controlled access: C# controls the way in which members can be
accessed. C# keywords enable you to declare some members wide open
to the public while internal members are protected from view and
some secrets are kept private. Notice the little hints. Access control
secrets are revealed in Chapter 11.

� Specialization: C# supports specialization through a mechanism known
as class inheritance. One class inherits the members of another class. For
example, you can create a Car class as a particular type of Vehicle.
Chapter 12 specializes in specialization.

� Polymorphism: This feature enables an object to perform an operation
the way it wants to. The Rocket type of Vehicle may implement the
Start operation much differently from the way the Car type of Vehicle
does. At least, I hope it does every time I turn the key in my car — with
my car you never know. Chapters 13 and 14 find their own way of
describing polymorphism.

219Chapter 10: Object-Oriented Programming — What’s It All About?

17_597043 ch10.qxd 9/20/05 2:04 PM Page 219

220 Part IV: Object-Oriented Programming

17_597043 ch10.qxd 9/20/05 2:04 PM Page 220

Chapter 11

Holding a Class Responsible
In This Chapter
� Letting the class protect itself through access control

� Allowing an object to initialize itself via the constructor

� Defining multiple constructors for the same class

� Constructing static or class members

A class must be held responsible for its actions. Just as a microwave
oven shouldn’t burst into flames if you press the wrong key, a class

shouldn’t allow itself to roll over and die when presented with incorrect data.

To be held responsible for its actions, a class must ensure that its initial state
is correct, and control its subsequent state so that it remains valid. C# pro-
vides both of these capabilities.

Restricting Access to Class Members
Simple classes define all their members as public. Consider a BankAccount
program that maintains a balance data member to retain the balance in each
account. Making that data member public puts everyone on the honor
system.

I don’t know about your bank, but my bank is not nearly so forthcoming as to
leave a pile of money and a register for me to mark down every time I add
money to or take money away from the pile. After all, I may forget to mark my
withdrawals in the register. I’m not as young as I used to be — my memory is
beginning to fade.

Controlling access avoids little mistakes like forgetting to mark a with-
drawal here or there. It also manages to avoid some really big mistakes with
withdrawals.

18_597043 ch11.qxd 9/20/05 2:07 PM Page 221

I know exactly what you functional types out there are thinking: “Just make a
rule that other classes can’t access the balance data member directly, and
that’s that.” That approach may work in theory, but in practice it never does.
People start out with good intentions (like my intentions to work out every
day), but those good intentions get crushed under the weight of schedule
pressures to get the product out the door. Speaking of weight. . . .

A public example of public BankAccount
The following example BankAccount class declares all its methods public
but declares its data members, including nAccountNumber and dBalance, to
be private. Note that I’ve left it in an incorrect state to make a point. The fol-
lowing code won’t compile correctly yet.

// BankAccount - create a bank account using a double variable
// to store the account balance (keep the balance
// in a private variable to hide its implementation
// from the outside world)
// Note: Until you correct it, this program fails to compile
// because Main() refers to a private member of class BankAccount.
using System;
namespace BankAccount
{
public class Program
{
public static void Main(string[] args)
{
Console.WriteLine(“This program doesn’t compile in its present state.”);
// open a bank account
Console.WriteLine(“Create a bank account object”);
BankAccount ba = new BankAccount();
ba.InitBankAccount();
// accessing the balance via the Deposit() method is OK -
// Deposit() has access to all the data members
ba.Deposit(10);
// accessing the data member directly is a compile time error
Console.WriteLine(“Just in case you get this far”

+ “\nThe following is supposed to “
+ “generate a compile error”);

ba.dBalance += 10;
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
// BankAccount - define a class that represents a simple account
public class BankAccount
{
private static int nNextAccountNumber = 1000;
private int nAccountNumber;

222 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 222

// maintain the balance as a double variable
private double dBalance;
// Init - initialize a bank account with the next
// account id and a balance of 0
public void InitBankAccount()
{
nAccountNumber = ++nNextAccountNumber;
dBalance = 0.0;

}
// GetBalance - return the current balance
public double GetBalance()
{
return dBalance;

}
// AccountNumber
public int GetAccountNumber()
{
return nAccountNumber;

}
public void SetAccountNumber(int nAccountNumber)
{
this.nAccountNumber = nAccountNumber;

}
// Deposit - any positive deposit is allowed
public void Deposit(double dAmount)
{
if (dAmount > 0.0)
{
dBalance += dAmount;

}
}
// Withdraw - you can withdraw any amount up to the
// balance; return the amount withdrawn
public double Withdraw(double dWithdrawal)
{
if (dBalance <= dWithdrawal)
{
dWithdrawal = dBalance;

}
dBalance -= dWithdrawal;
return dWithdrawal;

}
// GetString - return the account data as a string
public string GetString()
{
string s = String.Format(“#{0} = {1:C}”,

GetAccountNumber(),
GetBalance());

return s;
}

}
}

223Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 223

In this code, dBalance -= dWithdrawal is the same as dBalance =
dBalance - dWithdrawal. C# programmers tend to use the shortest nota-
tion available.

Marking a member public makes that member available to any other code
within your program.

The BankAccount class provides an InitBankAccount() method to initial-
ize the members of the class, a Deposit() method to handle deposits,
and a Withdraw() method to perform withdrawals. The Deposit() and
Withdraw() methods even provide some rudimentary rules like “you can’t
deposit a negative number” and “you can’t withdraw more than you have in
your account” — both good rules for a bank, I’m sure you’ll agree. However,
everyone’s on the honor system as long as dBalance is accessible to external
methods. (In this context, external means “external to the class but within the
same program.”) That can be a problem on big programs written by teams of
programmers. It can even be a problem for you (and me), given general
human fallibility. Well-written code with rules that the compiler can enforce
saves us all from the occasional bullet to the big toe.

Before you get too excited, however, notice that the program doesn’t build.
Attempts to do so generate the following error message:

‘DoubleBankAccount.BankAccount.dBalance’ is inaccessible due to its protection
level.

I don’t know why it doesn’t just come out and say, “Hey, this is private so
keep your mitts off,” but that’s essentially what it means. The statement
ba.dBalance += 10; is illegal because dBalance is not accessible to
Main(), a function outside the BankAccount class. Replacing this line with
ba.Deposit(10) solves the problem. The BankAccount.Deposit() method
is public and therefore accessible to Main().

The default access type is private. Forgetting to declare a member specifi-
cally is the same as declaring it private. However, you should include the
private keyword to remove any doubt. Good programmers make their inten-
tions explicit, which is another way to reduce errors.

Jumping ahead — other levels of security
This section depends on some knowledge of inheritance (Chapter 12) and
namespaces (Bonus Chapter 2 on the CD). You can skip it for now if you want
but just know that it’s here when you need it.

C# provides the following levels of security:

224 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 224

� A public member is accessible to any class in the program.

� A private member is accessible only from the current class.

� A protected member is accessible from the current class and any of its
subclasses. See Chapter 12.

� An internal member is accessible from any class within the same pro-
gram module or assembly.

A C# module or “assembly” is a separately compiled piece of code, either
an executable program in an .EXE file or a supporting library module in
a .DLL file. A single namespace can extend across multiple modules.
Bonus Chapter 5 on the CD explains C# assemblies. Bonus Chapter 2
explains namespaces.

� An internal protected member is accessible from the current class
and any subclass and from classes within the same module.

Keeping a member hidden by declaring it private offers the maximum
amount of security. However, in many cases, you don’t need that level of
security. After all, the members of a subclass already depend on the members
of the base class, so protected offers a nice, comfortable level of security.

Why Worry about Access Control?
Declaring the internal members of a class public is a bad idea for at least
these reasons:

� With all data members public, you can’t easily determine when and
how data members are getting modified. Why bother building safety
checks into the Deposit() and Withdraw() methods? In fact, why
bother with these methods at all? Any method of any class can modify
these elements at any time. If other functions can access these data
members, they almost certainly will. (Bang! You just shot yourself in the
foot.)

Your BankAccount program may execute for an hour or so before you
notice that one of the accounts has a negative balance. The Withdraw()
method would have made sure this didn’t happen. Obviously, some
other function accessed the balance without going through Withdraw().
Figuring out which function is responsible and under what conditions is
a difficult problem.

� Exposing all the data members of the class makes the interface too
complicated. As a programmer using the BankAccount class, you don’t
want to know about the internals of the class. You just need to know that
you can deposit and withdraw funds. It’s like a candy machine with fifty
buttons versus one with just a few buttons.

225Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 225

� Exposing internal elements leads to a distribution of the class rules.
For example, my BankAccount class does not allow the balance to go
negative under any circumstances. That’s a business rule that should be
isolated within the Withdraw() method. Otherwise, you have to add
this check everywhere the balance is updated.

What happens when the bank decides to change the rules so that
“valued customers” are allowed to carry a slightly negative balance for a
short period to avoid unintended overdrafts? You now have to search
through the program to update every section of code that accesses the
balance to make sure that the safety checks — not the bank checks —
are changed.

Don’t make your classes and methods any more accessible than necessary.
This isn’t so much paranoia about snoopy hackers as a prudent step that
helps reduce errors as you code. Use private if possible, and then escalate
to protected, internal, internal protected, or public as necessary.

Accessor methods
If you look more carefully at the BankAccount class, you see a few other
methods. One, GetString(), returns a string version of the account fit for
presentation to any Console.WriteLine() for display. However, displaying
the contents of a BankAccount object may be difficult if the contents are
inaccessible. In addition, using the “Render unto Caesar” policy, the class
should have the right to decide how it gets displayed.

In addition, you see one “getting” method, GetBalance(), and a set of “set-
ting” methods, GetAccountNumber() and SetAccountNumber(). You may
wonder why I would bother to declare a data member like dBalance private
but provide a GetBalance() method to return its value. I actually have two
reasons, as follows:

� GetBalance() does not provide a way to modify dBalance — it
merely returns its value. This makes the balance read-only. To use the
analogy of an actual bank, you can look at your balance any time you
want; you just can’t take money out of your account without going
through the bank’s withdrawal mechanism.

� GetBalance() hides the internal format of the class from external
methods. GetBalance() may go through an extensive calculation, read-
ing receipts, adding account charges, and accounting for anything else
your bank may want to subtract from your balance. External functions
don’t know and don’t care. Of course, you care what fees are being
charged. You just can’t do anything about them, short of changing
banks.

226 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 226

Finally, GetBalance() provides a mechanism for making internal changes to
the class without the need to change the users of BankAccount. If the FDIC
mandates that your bank store deposits differently, that shouldn’t change the
way you access your account.

Access control to the rescue — an example
The following DoubleBankAccount program demonstrates a potential flaw in
the BankAccount program. The entire program is on your CD; however, the
following listing shows just Main() — the only portion of the program that
differs from the earlier BankAccount program:

// DoubleBankAccount - create a bank account using a double variable
// to store the account balance (keep the balance
// in a private variable to hide its implementation
// from the outside world)
namespace DoubleBankAccount
{
using System;
public class Program
{
public static void Main(string[] args)
{
// open a bank account
Console.WriteLine(“Create a bank account object”);
BankAccount ba = new BankAccount();
ba.InitBankAccount();
// make a deposit
double dDeposit = 123.454;
Console.WriteLine(“Depositing {0:C}”, dDeposit);
ba.Deposit(dDeposit);
// account balance
Console.WriteLine(“Account = {0}”, ba.GetString());
// here’s the problem
double dAddition = 0.002;
Console.WriteLine(“Adding {0:C}”, dAddition);
ba.Deposit(dAddition);
// resulting balance
Console.WriteLine(“Resulting account = {0}”, ba.GetString());
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

227Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 227

The Main() function creates a bank account and then deposits $123.454, an
amount that contains a fractional number of cents. Main() then deposits a
small fraction of a cent to the balance and displays the resulting balance.

The output from this program appears as follows:

Create a bank account object
Depositing $123.45
Account = #1001 = $123.45
Adding $0.00
Resulting account = #1001 = $123.46
Press Enter to terminate...

Users start to complain. “I just can’t reconcile my checkbook with my bank
statement.” Personally, I’m happy if I can get to the nearest $100, but some
people insist that their account match to the penny. Apparently, the program
has a bug.

The problem, of course, is that $123.454 shows up as $123.45. To avoid the
problem, the bank decides to round deposits and withdrawals to the nearest
cent. Deposit $123.454, and the bank takes that extra 0.4 cent. On the other
side, the bank gives up enough 0.4 cents that everything balances out in the
long run.

The easiest way to do this is by converting the bank accounts to decimal
and using the Decimal.Round() method, as shown in the following
DecimalBankAccount program:

// DecimalBankAccount - create a bank account using a decimal
// variable to store the account balance
using System;
namespace DecimalBankAccount
{
public class Program
{
public static void Main(string[] args)
{
// open a bank account
Console.WriteLine(“Create a bank account object”);
BankAccount ba = new BankAccount();
ba.InitBankAccount();
// make a deposit
double dDeposit = 123.454;
Console.WriteLine(“Depositing {0:C}”, dDeposit);
ba.Deposit(dDeposit);
// account balance
Console.WriteLine(“Account = {0}”, ba.GetString());
// now add in a very small amount
double dAddition = 0.002;
Console.WriteLine(“Adding {0:C}”, dAddition);
ba.Deposit(dAddition);

228 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 228

// resulting balance
Console.WriteLine(“Resulting account = {0}”, ba.GetString());
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
// BankAccount - define a class that represents a simple account
public class BankAccount
{
private static int nNextAccountNumber = 1000;
private int nAccountNumber;
// maintain the balance as a single decimal variable
private decimal mBalance;
// Init - initialize a bank account with the next
// account id and a balance of 0
public void InitBankAccount()
{
nAccountNumber = ++nNextAccountNumber;
mBalance = 0;

}
// GetBalance - return the current balance
public double GetBalance()
{
return (double)mBalance;

}
// AccountNumber
public int GetAccountNumber()
{
return nAccountNumber;

}
public void SetAccountNumber(int nAccountNumber)
{
this.nAccountNumber = nAccountNumber;

}
// Deposit - any positive deposit is allowed
public void Deposit(double dAmount)
{
if (dAmount > 0.0)
{
// round off the double to the nearest cent before depositing
decimal mTemp = (decimal)dAmount;
mTemp = Decimal.Round(mTemp, 2);
mBalance += mTemp;

}
}
// Withdraw - you can withdraw any amount up to the
// balance; return the amount withdrawn
public decimal Withdraw(decimal dWithdrawal)
{
if (mBalance <= dWithdrawal)
{
dWithdrawal = mBalance;

}

229Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 229

mBalance -= dWithdrawal;
return dWithdrawal;

}
// GetString - return the account data as a string
public string GetString()
{
string s = String.Format(“#{0} = {1:C}”,

GetAccountNumber(),
GetBalance());

return s;
}

}
}

I’ve converted all the internal representations to decimal values, a type
better adapted to handling bank account balances than double in any case.
The Deposit() method now uses the Decimal.Round() function to round
the deposit amount to the nearest cent before making the deposit. The
output from the program is now as expected:

Create a bank account object
Depositing $123.45
Account = #1001 = $123.45
Adding $0.00
Resulting account = #1001 = $123.45
Press Enter to terminate...

So what?
You could argue that I should have written the BankAccount program using
decimal input arguments to begin with, and I would probably agree. But the
point is that I didn’t. Other applications were written using double as the
form of storage. A problem arose. The BankAccount class was able to fix the
problem internally with no changes to the application software. (Notice that
the class’s public interface didn’t change: Balance() still returns a double.)

I repeat: Applications using class BankAccount didn’t have to change.

In this case, the only function potentially affected was Main(), but the effects
could have extended to dozens of functions that accessed bank accounts,
and those functions could have been spread over hundreds of modules. None
of those functions would have to change because the fix was within the con-
fines of the BankAccount class. This would not have been possible if the
internal members of the class had been exposed to external functions.

Internal changes to a class still require some retesting of other code, even
though you didn’t have to modify that code.

230 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 230

Defining class properties
The GetX() and SetX() methods demonstrated in the BankAccount pro-
grams are called access functions, or simply accessors. Although they signify
good programming habits in theory, access functions can get clumsy in prac-
tice. For example, the following code is necessary to increment
nAccountNumber by 1:

SetAccountNumber(GetAccountNumber() + 1);

C# defines a construct called a property, which makes using access functions
much easier. The following code snippet defines a read-write property,
AccountNumber:

public int AccountNumber // no parentheses here
{
get{return nAccountNumber;} // curly braces & semicolon
set{nAccountNumber = value;} // value is a keyword

}

The get section is implemented whenever the property is read, while the set
section is invoked on the write. The following Balance property is read-only
because only the get section is defined:

public double Balance
{
get
{
return (double)mBalance;

}
}

In use, these properties appear as follows:

BankAccount ba = new BankAccount();
// set the account number property
ba.AccountNumber = 1001;
// read both properties
Console.WriteLine(“#{0} = {1:C}”, ba.AccountNumber, ba.Balance);

The properties AccountNumber and Balance look very much like public
data members, both in appearance and in use. However, properties enable
the class to protect internal members (Balance is a read-only property)
and hide their implementation (the underlying mBalance data member is
private). Notice that Balance performs a conversion — it could have per-
formed any number of calculations. Properties aren’t necessarily one-liners.

By convention, the names of properties begin with a capital letter. Note that
properties don’t have parentheses: Balance, not Balance().

231Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 231

Properties are not necessarily inefficient. The C# compiler can optimize a
simple accessor to the point that it generates no more machine code than
accessing the data member directly. This is important, not only to an applica-
tion program but also to C# itself. The C# library uses properties throughout,
and you should, too, even to access class data members from methods in the
same class.

Static properties
A static (class) data member may be exposed through a static property, as
shown in the following simplistic example:

public class BankAccount
{
private static int nNextAccountNumber = 1000;
public static int NextAccountNumber
{
get{return nNextAccountNumber;}

}
// . . .

}

The NextAccountNumber property is accessed through the class as follows,
because it isn’t a property of a single object:

// read the account number property
int nValue = BankAccount.NextAccountNumber;

Properties with side effects
A get operation can perform extra work other than simply retrieving the
associated property, as shown in the following code:

public static int AccountNumber
{
// retrieve the property and set it up for the
// next retrieval by incrementing it
get{return ++nNextAccountNumber;}

}

This property increments the static account number member before return-
ing the result. This probably is not a good idea, however, because the user of
the property gets no clue that anything is happening other than the actual
reading of the property. The incrementation is a side effect.

Like the accessor functions that they mimic, properties should not change
the state of the class other than, say, setting a data member’s value. In gen-
eral, both properties and methods should avoid side effects because they can
lead to subtle bugs. Change a class as directly and explicitly as possible.

232 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 232

Getting Your Objects Off to a
Good Start — Constructors

Controlling class access is only half the problem. An object needs a good
start in life if it is to grow. A class can supply an initialization method that the
application calls to get things started, but what if the application forgets to
call the function? The class starts out with garbage, and the situation doesn’t
get any better after that. If you’re going to hold the class accountable, you
have to make sure that it gets a chance to start out correctly.

C# solves that problem by calling the initialization function for you — for
example:

MyObject mo = new MyObject();

In other words, this statement not only grabs an object out of a special
memory area, but it also initializes that object by calling an initialization
function.

Don’t confuse the terms class and object. Dog is a class. My dog Scooter is an
object of class Dog.

The C#-Provided Constructor
C# is pretty good at keeping track of whether a variable has been initialized.
C# does not allow you to use an uninitialized variable. For example, the fol-
lowing code generates a compile time error:

public static void Main(string[] args)
{
int n;
double d;
double dCalculatedValue = n + d;

}

C# tracks the fact that neither n nor d have been assigned a value and doesn’t
allow them to be used in the expression. Compiling this tiny program gener-
ates the following compiler errors:

Use of unassigned local variable ‘n’
Use of unassigned local variable ‘d’

233Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 233

By comparison, C# provides a default constructor that initializes the data
members of an object to 0 for intrinsic variables, false for booleans, and
null for object references. Consider the following simple example program:

using System;
namespace Test
{
public class Program
{
public static void Main(string[] args)
{
// first create an object
MyObject localObject = new MyObject();
Console.WriteLine(“localObject.n is {0}”, localObject.n);
if (localObject.nextObject == null)
{
Console.WriteLine(“localObject.nextObject is null”);

}
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
public class MyObject
{
internal int n;
internal MyObject nextObject;

}
}

This program defines a class MyObject, which contains both a simple vari-
able n of type int and a reference to an object, nextObject, forming a chain,
or linked list, of objects. The Main() function creates a MyObject and then
displays the initial contents of n and nextObject.

The output from executing the program appears as follows:

localObject.n is 0
localObject.nextObject is null
Press Enter to terminate...

C# executes some small piece of code when the object is created to initialize
the object and its members. Left to their own devices, the data members
localObject.n and nextObject would contain random, garbage values.

The code that initializes values when they are created is called the construc-
tor. It “constructs” the class, in the sense of initializing its members.

234 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 234

The Default Constructor
C# ensures that an object starts life in a known state: all zeros. However, for
many classes (probably most classes), all zeros is not a valid state. Consider
the following BankAccount class from earlier in this chapter:

public class BankAccount
{
int nAccountNumber;
double dBalance;
// . . .other members

}

Although an initial balance of zero is probably okay, an account number of 0
definitely is not the hallmark of a valid bank account.

So far, the BankAccount class includes the InitBankAccount() method to
initialize the object. However, this approach puts too much responsibility on
the application software using the class. If the application fails to invoke the
InitBankAccount() function, the bank account methods may not work,
through no fault of their own. A class should not rely on external functions
like InitBankAccount() to start the object in a valid state.

To get around this problem, the class can provide a special function that C#
calls automatically when the object is created: the class constructor. The con-
structor could have been called Init(), Start(), or Create(), just as long
as everyone agrees on the name. Instead, C# requires the constructor to
carry the name of the class. Thus, a constructor for the BankAccount class
appears as follows:

public void Main(string[] args)
{
BankAccount ba = new BankAccount();

}
public class BankAccount
{
// bank accounts start at 1000 and increase sequentially from there
static int nNextAccountNumber = 1000;
// maintain the account number and balance for each object
int nAccountNumber;
double dBalance;
// BankAccount constructor - here it is, ta daa!
public BankAccount() // parentheses, possible arguments, no return type
{
nAccountNumber = ++nNextAccountNumber;
dBalance = 0.0;

}
// . . . other members . . .

}

235Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 235

The contents of the BankAccount constructor are the same as those of the
original Init...() method. However, the way you declare and use the
method differs as follows:

� The constructor always carries the same name as the class.

� The constructor never has a return type, not even void.

� Main() does not need to invoke any extra function to initialize the
object when it is created; no Init() is necessary.

Constructing something
Try one of these constructor thingees out. Consider the following program,
DemonstrateDefaultConstructor:

// DemonstrateDefaultConstructor - demonstrate how default constructors

// work; create a class with a constructor
// and then step through a few scenarios
using System;
namespace DemonstrateDefaultConstructor
{
// MyObject - create a class with a noisy constructor
// and an internal data object
public class MyObject
{
// this data member is a property of the class
static MyOtherObject staticObj = new MyOtherObject();
// this data member is a property of the object
MyOtherObject dynamicObj;
// constructor (a real chatterbox)
public MyObject()
{
Console.WriteLine(“MyObject constructor starting”);
Console.WriteLine(
“(Static data member constructed before this constructor)”);

Console.WriteLine(“Now create nonstatic data member dynamically:”);
dynamicObj = new MyOtherObject();
Console.WriteLine(“MyObject constructor ending”);

}
}
// MyOtherObject- this class also has a noisy constructor
// but no internal members
public class MyOtherObject
{
public MyOtherObject()
{
Console.WriteLine(“MyOtherObject constructing”);

}
}

236 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 236

public class Program
{
public static void Main(string[] args)
{
Console.WriteLine(“Main() starting”);
Console.WriteLine(“Creating a local MyObject in Main():”);
MyObject localObject = new MyObject();
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

Executing this program generates the following output:

Main() starting
Creating a local MyObject in Main():
MyOtherObject constructing
MyObject constructor starting
(Static data member constructed before this constructor)
Now create nonstatic data member dynamically:
MyOtherObject constructing
MyObject constructor ending
Press Enter to terminate...

The following steps reconstruct what just happened here:

1. The program starts, and Main() outputs the initial message and
announces that it’s about to create a local MyObject.

2. Main() creates a localObject of type MyObject.

3. MyObject contains a static member staticObj of class
MyOtherObject. All static data members are created before the first
MyObject() constructor runs. In this case, C# populates staticObj
with a newly created MyOtherObject before passing control to the
MyObject constructor. This step accounts for the fifth line of output.

4. The constructor for MyObject is given control. It outputs the initial
message, MyObject constructor starting and then notes that the
static member was already constructed before the MyObject() con-
structor began: (Static data member constructed before this
constructor).

5. After announcing its intention with Now create nonstatic data
member dynamically, the MyObject constructor creates an object of
class MyOtherObject using the new operator, creating the second
MyOtherObject constructing message as the MyOtherObject con-
structor is called.

6. Control returns to the MyObject constructor, which returns to Main().

7. Job well done!

237Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 237

Executing the constructor
from the debugger
It’s illuminating to execute the same program from the debugger as follows:

1. Rebuild the program: Choose Build➪Build
DemonstrateDefaultConstructor.

2. Before you start executing the program from the debugger, set a
breakpoint at the Console.WriteLine() call in the MyOtherObject
constructor.

To set a breakpoint, click in the gray trough on the left side of the dis-
play, next to the line at which you want to stop.

Figure 11-1 shows my display with the breakpoint set. The red ball is in
the gray trough.

3. Rather than choosing Debug➪Start Debugging, choose Debug➪
Step Into (or, better yet, press F11).

Your menus, toolbars, and windows should change a bit, and then a
bright yellow highlight appears on the opening curly brace in Main().

Figure 11-1:
The red

highlighting
in the

MyOther
Object

constructor
indicates
the pres-
ence of a

breakpoint.

238 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 238

4. Press F11 three more times and lightly rest the mouse pointer on the
localObject variable (without clicking).

You’re about to call the MyObject constructor. Your display should now
look like that shown in Figure 11-2. You can see that localObject is cur-
rently null under the cursor. The Locals window below shows the same
thing.

5. Press F11 one more time.

The program executes up to the breakpoint in MyOtherObject, as
shown by the bar in Figure 11-3. How did you reach this point? The last
call in Main() invoked the constructor for MyObject. But before that
constructor begins to execute, C# initializes the static data member in
class MyObject. That data member is of type MyOtherObject, so initial-
izing it means invoking its constructor — which lands you at the break-
point. (Without the breakpoint, you wouldn’t see the debugger stop
there, although the constructor would indeed execute, as you could con-
firm by checking that the constructor’s message shows up in the con-
sole window.)

Figure 11-2:
The Visual

Studio
debugger

display,
right before

jumping into
constructor-

ville.

239Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 239

6. Press F11 twice more, and you’re stopped at the static data member,
staticObj, as shown in Figure 11-4.

It was that object’s constructor that you just stepped out of.

Figure 11-4:
Having just

stepped
through the
MyOther
Object

constructor,
you’re back
at the point
where the

constructor
was

invoked.

Figure 11-3:
Control

passes to
the

MyOther
Object

constructor
before

heading
into the

MyObject
constructor.

240 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 240

7. Continue pressing F11 as you walk through the program.

The first time you press F11, you stop at the beginning of the MyObject
constructor, at last. Note that you step into the MyOtherObject con-
structor a second time when the MyObject constructor creates the
other MyObject data member, the nonstatic one called dynamicObj.

Remember to continue through the Console.Read() statement back in
Main().

Bonus Chapter 4 on the CD gives you a thorough tour of the debugger.

Initializing an object directly — the
default constructor
You may think that almost every class would have a default constructor of
some type, and in a way, you are correct. However, C# enables you to initial-
ize data members directly using initializers.

Thus, I could have written the BankAccount class as follows:

public class BankAccount
{
// bank accounts start at 1000 and increase sequentially from there
static int nNextAccountNumber = 1000;
// maintain the account number and balance for each object
int nAccountNumber = ++nNextAccountNumber;
double dBalance = 0.0;
// . . . other members . . .

}

Here’s the initializer business. Both nAccountNumber and dBalance are
assigned a value as part of their declaration. This has the same effect as a
constructor but without having to do the work in the constructor.

Be very clear about exactly what’s happening. You may think that this state-
ment sets dBalance to 0.0 directly. However, dBalance exists only as a part
of an object. Thus, the assignment is not executed until a BankAccount
object is created. In fact, this assignment is executed every time an object is
created.

Note that the static data member nNextAccountNumber is initialized the first
time the BankAccount class is accessed — as your tour in the debugger
showed, that’s the first time you access any method or property of the object
owning the static data member, including the constructor. Once initialized,
the static member is not reinitialized each time you construct a BankAccount
instance. That’s different from the nonstatic members.

241Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 241

Initializers are executed in the order of their appearance in the class declara-
tion. If C# encounters both initializers and a constructor, the initializers are
executed before the body of the constructor.

Seeing that construction stuff
with initializers
In the DemonstrateDefaultConstructor program, move the call new
MyOtherObject() from the MyObject constructor to the declaration itself,
as follows (see the bold text), modify the second WriteLine() statement as
shown, and then rerun the program:

public class MyObject
{
// this member is a property of the class
static MyOtherObject staticObj = new MyOtherObject();
// this member is a property of the object
MyOtherObject dynamicObj = new MyOtherObject();
public MyObject()
{
Console.WriteLine(“MyObject constructor starting”);
Console.WriteLine(
“Both static data members initialized before this constructor)”);

// dynamicObj construction was here, now moved up
Console.WriteLine(“MyObject constructor ending”);

}
}

Compare the following output from this modified program with the output
from its predecessor, DemonstrateConstructor:

Main() starting
Creating a local MyObject in Main():
MyOtherObject constructing
MyOtherObject constructing
MyObject constructor starting
(Both static data members initialized before this constructor)
MyObject constructor ending
Press Enter to terminate...

You can find the entire program (after these changes) on the CD, under the
illustrious name of DemonstrateConstructorWithInitializer.

242 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 242

Overloading the Constructor (Is That
Like Overtaxing a Carpenter?)

You can overload constructors, just as you can overload any other method.

Overloading a function means defining two functions with the same name but
with different types of arguments. See Chapter 7 for details.

Suppose you wanted to provide the following three ways to create a
BankAccount: one with a zero balance like mine most of the time and two
more variations for a bank account with some initial value:

// BankAccountWithMultipleConstructors - provide our trusty bank account

// with a number of constructors, one for every occasion
using System;
namespace BankAccountWithMultipleConstructors
{
using System;
public class Program
{
public static void Main(string[] args)
{
// create a bank account with valid initial values
BankAccount ba1 = new BankAccount();
Console.WriteLine(ba1.GetString());
BankAccount ba2 = new BankAccount(100);
Console.WriteLine(ba2.GetString());
BankAccount ba3 = new BankAccount(1234, 200);
Console.WriteLine(ba3.GetString());
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
// BankAccount - simulate a simple bank account
public class BankAccount
{
// bank accounts start at 1000 and increase sequentially from there
static int nNextAccountNumber = 1000;
// maintain the account number and balance
int nAccountNumber;
double dBalance;
// provide a series of constructors depending upon the need
public BankAccount() // you create this one, not automatic
{
nAccountNumber = ++nNextAccountNumber;
dBalance = 0.0;

}
public BankAccount(double dInitialBalance)

243Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 243

{
// repeat some of the code from the default constructor
nAccountNumber = ++nNextAccountNumber;
// now the code unique to this constructor
// start with an initial balance as long as it’s positive
if (dInitialBalance < 0)
{
dInitialBalance = 0;

}
dBalance = dInitialBalance;

}
public BankAccount(int nInitialAccountNumber,

double dInitialBalance)
{
// ignore negative account numbers
if (nInitialAccountNumber <= 0)
{
nInitialAccountNumber = ++nNextAccountNumber;

}
nAccountNumber = nInitialAccountNumber;
// start with an initial balance as long as it’s positive
if (dInitialBalance < 0)
{
dInitialBalance = 0;

}
dBalance = dInitialBalance;

}
public string GetString()
{
return String.Format(“#{0} = {1:N}”, nAccountNumber, dBalance);

}
}

}

C# no longer provides a default constructor for you if you define your own
constructor, no matter what type it might be. Thus, you have to provide the
parameterless constructor in the preceding code.

This version of the program, named BankAccountWithMultiple
Constructors, provides the following three constructors:

� The first constructor assigns an account ID and sets a balance of 0.

� The second constructor assigns an account ID but initializes the account
with a positive balance. Negative balances are ignored.

� The third constructor allows the user to specify a positive account
number and a positive balance.

244 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 244

Main() creates a different bank account using each of the three constructors
and then outputs the objects that are created. The output from executing the
program is as follows:

#1001 = 0.00
#1002 = 100.00
#1234 = 200.00
Press Enter to terminate...

A real-world class would perform a good deal more testing of the input para-
meters to the constructor, to make sure that they’re legal.

You differentiate constructors by using the same rules that apply to func-
tions. The first object to be constructed in Main() — ba1 — is created with
no arguments and thus is vectored to the parameterless constructor
BankAccount() (still called the “default” constructor, but no longer gener-
ated automatically by C#) to receive the default account ID and a balance of
0. The second account, ba2, is sent to the BankAccount(double) construc-
tor to get the next bank account ID, but is created with an initial value of 100.
The third little piggie, ba3, goes for the full-meal deal, BankAccount(int,
double), and gets his own bank account ID and an initial balance.

Avoiding Duplication among Constructors
Like a typical soap opera script, the three BankAccount constructors have
significant amounts of duplication. As you can imagine, the situation would
get much worse in real-world classes that may have many constructors
and even more data elements to initialize. In addition, the tests on input
data can get more involved in a real-world class than on a Yahoo! Web page.
Duplicating these business rules is both tedious and error prone. The checks
can easily get out of synch. For example, through a coding error, two con-
structors may apply different sets of rules against the balance. Such errors
are very difficult to find.

You would like to have one constructor call the other, but constructors are
not functions — you can’t just call them. However, you can create some alter-
native function that does the actual construction and pass control to it, as
demonstrated in this BankAccountConstructorsAndFunction program:

// BankAccountConstructorsAndFunction - provide our trusty bank account with a

// number of constructors, one for every occasion
using System;
namespace BankAccountConstructorsAndFunction
{
using System;
public class Program
{

245Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 245

public static void Main(string[] args)
{
// create a bank account with valid initial values
BankAccount ba1 = new BankAccount();
Console.WriteLine(ba1.GetString());
BankAccount ba2 = new BankAccount(100);
Console.WriteLine(ba2.GetString());
BankAccount ba3 = new BankAccount(1234, 200);
Console.WriteLine(ba3.GetString());
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
// BankAccount - simulate a simple bank account
public class BankAccount
{
// bank accounts start at 1000 and increase sequentially from there
static int nNextAccountNumber = 1000;
// maintain the account number and balance
int nAccountNumber;
double dBalance;
// place all the real initialization code in a separate,
// conventional function, called from constructors
public BankAccount() // you create this one, not automatic
{
Init(++nNextAccountNumber, 0.0);

}
public BankAccount(double dInitialBalance)
{
Init(++nNextAccountNumber, dInitialBalance);

}
// the most specific constructor does all the real work
public BankAccount(int nInitialAccountNumber, double dInitialBalance)
{
Init(nInitialAccountNumber, dInitialBalance);

}
private void Init(int nInitialAccountNumber, double dInitialBalance)
{
nAccountNumber = nInitialAccountNumber;
// start with an initial balance as long as it’s positive
if (dInitialBalance < 0)
{
dInitialBalance = 0;

}
dBalance = dInitialBalance;

}
public string GetString()
{
return String.Format(“#{0} = {1:N}”, nAccountNumber, dBalance);

}
}

}

246 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 246

Here, an Init() method does the work of construction. However, this
approach isn’t exactly kosher for several reasons — not the least of which is
the fact that you are now calling a method of the object before the object has
been fully constructed. That’s a very dangerous thing to do.

Fortunately, this approach isn’t necessary. One constructor can refer to
another, using a variation of the this keyword, as follows:

// BankAccountConstructorsAndThis -

// provide our trusty bank account with a number of
// constructors, one for every occasion
using System;
namespace BankAccountConstructorsAndThis
{
using System;
public class Program
{
public static void Main(string[] args)
{
// create a bank account with valid initial values
BankAccount ba1 = new BankAccount();
Console.WriteLine(ba1.GetString());
BankAccount ba2 = new BankAccount(100);
Console.WriteLine(ba2.GetString());
BankAccount ba3 = new BankAccount(1234, 200);
Console.WriteLine(ba3.GetString());
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
// BankAccount - simulate a simple bank account
public class BankAccount
{
// bank accounts start at 1000 and increase sequentially from there
static int nNextAccountNumber = 1000;
// maintain the account number and balance
int nAccountNumber;
double dBalance;
// invoke the more specific constructor by providing
// default values for the missing arguments
public BankAccount() : this(0, 0) {}
public BankAccount(double dInitialBalance) : this(0, dInitialBalance) {}
// the most specific constructor does all the
// real work
public BankAccount(int nInitialAccountNumber, double dInitialBalance)
{
// ignore negative account numbers; a zero account
// number indicates that we should use the next available
if (nInitialAccountNumber <= 0)
{
nInitialAccountNumber = ++nNextAccountNumber;

247Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 247

}
nAccountNumber = nInitialAccountNumber;
// start with an initial balance as long as it’s positive
if (dInitialBalance < 0)
{
dInitialBalance = 0;

}
dBalance = dInitialBalance;

}
public string GetString()
{
return String.Format(“#{0} = {1:N}”, nAccountNumber, dBalance);

}
}

}

This version of BankAccount provides the same three constructors as the
previous version; however, rather than repeat the same tests in each con-
structor, both of the simpler constructors invoke the most flexible construc-
tor, providing defaults for the missing arguments. Init() is now gone.

Creating an object using the default constructor invokes the following
BankAccount() constructor:

BankAccount ba1 = new BankAccount(); // no parameters

The BankAccount() constructor immediately passes control to the
BankAccount(int, double) constructor, passing it the default values 0 and
0.0, as follows:

public BankAccount() : this(0, 0) {}

Note that because the constructor has an empty body, you can write it all on
one line.

The all-powerful third constructor has been updated to look for a zero bank
account ID and to supply a valid one instead.

Control returns to the default constructor after the invoked constructor has
completed. The body of the default constructor is empty in this case.

Creating a bank account with a balance but a default account ID goes down
the following path:

public BankAccount(double d) : this(0, d) {}

248 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 248

Being Object Stingy
You can’t construct an object without a constructor of some sort. If you
define your own constructor, C# takes its constructor away. Combining these
two facts, you can create a class that can only be instantiated locally.

For example, only methods that are defined within the same assembly as
BankAccount can create a BankAccount object with the constructor declared
internal, as in the bold text that follows (see Bonus Chapter 5 on the CD for
more on assemblies):

// BankAccount - simulate a simple bank account
public class BankAccount
{
// bank accounts start at 1000 and increase sequentially from there
static int nNextAccountNumber = 1000;
// maintain the account number and balance
int nAccountNumber;
double dBalance;
// invoke the more specific constructor by providing
// default values for the missing arguments
internal BankAccount() // here’s the internal constructor
{
nAccountNumber = ++nNextAccountNumber;
dBalance = 0;

}
public string GetString()
{
return String.Format(“#{0} = {1:N}”, nAccountNumber, dBalance);

}
}

249Chapter 11: Holding a Class Responsible

18_597043 ch11.qxd 9/20/05 2:07 PM Page 249

250 Part IV: Object-Oriented Programming

18_597043 ch11.qxd 9/20/05 2:07 PM Page 250

Chapter 12

Inheritance — Is That All I Get?
In This Chapter
� Defining one class in terms of another, more fundamental class

� Differentiating between “is a” and “has a”

� Changing the class of an object

� Constructing static or class members

� Including constructors in an inheritance hierarchy

� Invoking the base class constructor specifically

Object-oriented programming is based on three principles: the ability to
control access (encapsulation), the ability to inherit from other classes,

and the ability to respond appropriately (polymorphism).

Inheritance is a common concept. I am a human, except when I first wake up.
I inherit certain properties from the class Human, such as my ability to con-
verse, more or less, and my dependence on air, food, and carbohydrate-based
beverages with lots of caffeine. The class Human inherits its dependencies on
air, water, and nourishment from the class Mammal, which inherits from the
class Animal.

The ability to pass down properties is a powerful one. It enables you to
describe things in an economical way. For example, if my son asks, “What’s
a duck?” I can say, “It’s a bird that goes quack.” Despite what you may think,
that answer conveys a considerable amount of information. My son knows
what a bird is, and now he knows all those same things about a duck plus
the duck’s additional property of “quackness.”

Object-oriented languages express this inheritance relationship by allowing
one class to inherit from another. This feature enables object-oriented lan-
guages to generate a model that’s closer to the real world than the model
generated by languages that don’t support inheritance.

19_597043 ch12.qxd 9/20/05 2:12 PM Page 251

Inheriting a Class
In the following InheritanceExample program, the class SubClass inherits
from the class BaseClass:

// InheritanceExample - provide the simplest possible
// demonstration of inheritance
using System;
namespace InheritanceExample
{
public class BaseClass
{
public int nDataMember;
public void SomeMethod()
{
Console.WriteLine(“SomeMethod()”);

}
}
public class SubClass : BaseClass
{
public void SomeOtherMethod()
{
Console.WriteLine(“SomeOtherMethod()”);

}
}
public class Program
{
public static void Main(string[] args)
{
// create a base class object
Console.WriteLine(“Exercising a base class object:”);
BaseClass bc = new BaseClass();
bc.nDataMember = 1;
bc.SomeMethod();
// now create a subclass element
Console.WriteLine(“Exercising a subclass object:”);
SubClass sc = new SubClass();
sc.nDataMember = 2;
sc.SomeMethod();
sc.SomeOtherMethod();
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The class BaseClass is defined with a data member and a simple method,
SomeMethod(). Main() creates and exercises the BaseClass object bc.

252 Part IV: Object-Oriented Programming

19_597043 ch12.qxd 9/20/05 2:12 PM Page 252

The class SubClass inherits from that class by placing the name of the class,
BaseClass, after a colon in the class definition. SubClass gets all the mem-
bers of BaseClass as its own, plus any members that it may add to the pile.
Main() demonstrates that SubClass now has a data member, nDataMember,
and a member function, SomeMethod(), to join the brand-new member of the
family, little method SomeOtherMethod() — and what a joy it is, too.

The program produces the following expected output — actually, I’m sort of
surprised whenever one of my programs works as expected:

Exercising a base class object:
SomeMethod()
Exercising a subclass object:
SomeMethod()
SomeOtherMethod()
Press Enter to terminate...

Why Do You Need Inheritance?
Inheritance serves several important functions. You may think that inheri-
tance reduces the amount of typing. In a way it does — you don’t need to
repeat the properties of a Person when you’re describing a Student class.

253Chapter 12: Inheritance — Is That All I Get?

Inheritance is amazing
To make sense of our surroundings, humans
build extensive taxonomies. For example, Fido is
a special case of dog, which is a special case of
canine, which is a special case of mammal —
and so it goes. This ability to classify things
shapes our understanding of the world.

In an object-oriented language like C#, you say
that the class Student inherits from the class
Person. You also say that Person is a base
class of Student, and Student is a subclass
of Person. Finally, you say that a Student
IS_A Person. (Using all caps is a common way
of expressing this unique relationship — I didn’t
make this up.)

Notice that the IS_A property is not reflexive:
Although Student IS_A Person, the reverse
is not true. A Person IS_NOT_A Student.

A statement like this always refers to the gen-
eral case. It could be that a particular Person
is, in fact, a Student— lots of people who are
members of the class Person are not members
of the class Student. In addition, the class
Student has properties it does not share with
the class Person. For example, Student has
a grade point average, but the ordinary Person
quite happily does not.

The inheritance property is transitive. For exam-
ple, if I define a new class GraduateStudent
as a subclass of Student, GraduateStudent
is also a Person. It must be that way: If a
GraduateStudent IS_A Student and a
Student IS_A Person, a GraduateStudent
IS_A Person. Q.E.D.

19_597043 ch12.qxd 9/20/05 2:12 PM Page 253

A more important, related issue is that major buzzword, reuse. Software sci-
entists have known for some time that starting from scratch with each new
project and rebuilding the same software components doesn’t make much
sense.

Compare the situation in software development to that of other industries.
How many car manufacturers start by building their own wrenches and screw-
drivers before they construct a car? And even if they did, how many would
start over completely, building all new tools for the next model? Practitioners
in other industries have found that starting with existing screws, bolts, nuts,
and even larger off-the-shelf components such as motors and compressors
makes more sense than starting from scratch.

Inheritance enables you to tweak existing software components. You can
adapt existing classes to new applications without making internal modifica-
tions. The existing class is inherited into — extended by — a new subclass
that contains the necessary additions and modifications. If someone else
wrote the base class, you may not be able to modify it, so inheritance can
save the day.

This capability carries with it a third benefit of inheritance. Suppose you
inherit from some existing class. Later, you find that the base class has a bug
you must correct. If you’ve modified the class to reuse it, you must manually
check for, correct, and retest the bug in each application separately. If you’ve
inherited the class without changes, you can generally stick the updated
class into the other application without much hassle.

But the biggest benefit of inheritance is that it describes the way life is.
Things inherit properties from each other. There’s no getting around it.
Basta! — as my Italian grandmother would say.

A More Involved Example — Inheriting
from a BankAccount Class

A bank maintains several types of accounts. One type, the savings account,
has all the properties of a simple bank account plus the ability to accumulate
interest. The following SimpleSavingsAccount program models this rela-
tionship in C#.

To those faint of heart, you may want to steady yourself. This listing is a little
on the long side; however, the pieces are fairly well divided. The version of
this program on the CD includes some modifications from the next section of
this chapter, so it’s a bit different from this listing.

254 Part IV: Object-Oriented Programming

19_597043 ch12.qxd 9/20/05 2:12 PM Page 254

// SimpleSavingsAccount - implement a SavingsAccount as a form of

// BankAccount; don’t use any virtual methods
// (Chapter 13 explains virtual methods)
using System;
namespace SimpleSavingsAccount
{
// BankAccount - simulate a bank account each of which
// carries an account ID (which is assigned
// upon creation) and a balance
public class BankAccount // the base class
{
// bank accounts start at 1000 and increase sequentially from there
public static int nNextAccountNumber = 1000;
// maintain the account number and balance for each object
public int nAccountNumber;
public decimal mBalance;
// Init - initialize a bank account with the next account ID and the
// specified initial balance (default to zero)
public void InitBankAccount()
{
InitBankAccount(0);

}
public void InitBankAccount(decimal mInitialBalance)
{
nAccountNumber = ++nNextAccountNumber;
mBalance = mInitialBalance;

}
// Balance property
public decimal Balance
{
get { return mBalance;}

}
// Deposit - any positive deposit is allowed
public void Deposit(decimal mAmount)
{
if (mAmount > 0)
{
mBalance += mAmount;

}
}
// Withdraw - you can withdraw any amount up to the
// balance; return the amount withdrawn
public decimal Withdraw(decimal mWithdrawal)
{
if (Balance <= mWithdrawal) // use Balance property
{
mWithdrawal = Balance;

}
mBalance -= mWithdrawal;
return mWithdrawal;

}
// ToString - stringify the account

255Chapter 12: Inheritance — Is That All I Get?

19_597043 ch12.qxd 9/20/05 2:12 PM Page 255

public string ToBankAccountString()
{
return String.Format(“{0} - {1:C}”,
nAccountNumber, Balance);

}
}
// SavingsAccount - a bank account that draws interest
public class SavingsAccount : BankAccount // the subclass
{
public decimal mInterestRate;
// InitSavingsAccount - input the rate expressed as a
// rate between 0 and 100
public void InitSavingsAccount(decimal mInterestRate)
{
InitSavingsAccount(0, mInterestRate);

}
public void InitSavingsAccount(decimal mInitial, decimal mInterestRate)
{
InitBankAccount(mInitial);
this.mInterestRate = mInterestRate / 100;

}
// AccumulateInterest - invoke once per period
public void AccumulateInterest()
{
mBalance = Balance + (decimal)(Balance * mInterestRate);

}
// ToString - stringify the account
public string ToSavingsAccountString()
{
return String.Format(“{0} ({1}%)”,
ToBankAccountString(), mInterestRate * 100);

}
}
public class Program
{
public static void Main(string[] args)
{
// create a bank account and display it
BankAccount ba = new BankAccount();
ba.InitBankAccount(100);
ba.Deposit(100);
Console.WriteLine(“Account {0}”, ba.ToBankAccountString());
// now a savings account
SavingsAccount sa = new SavingsAccount();
sa.InitSavingsAccount(100, 12.5M);
sa.AccumulateInterest();
Console.WriteLine(“Account {0}”, sa.ToSavingsAccountString());
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

256 Part IV: Object-Oriented Programming

19_597043 ch12.qxd 9/20/05 2:12 PM Page 256

The BankAccount class is not unlike some of those appearing in other chap-
ters of this book. It begins with an overloaded initialization function
InitBankAccount(): one for accounts that start out with an initial balance
and another for which an initial balance of zero will just have to do. Notice
that this version of BankAccount doesn’t take advantage of the latest and
greatest constructor advances you see in the final version of the class in
Chapter 11. By the end of this chapter, that will all be cleaned up, and you’ll
see why I chose to drop back ten yards here.

The Balance property allows others to read the balance without giving them
the ability to modify it. The Deposit() method accepts any positive deposit.
Withdraw() lets you take out as much as you want, as long as you have
enough in your account — my bank’s nice, but it’s not that nice. ToBank
AccountString() creates a string that describes the account.

The SavingsAccount class inherits all that good stuff from BankAccount. To
that, it adds an interest rate and the ability to accumulate interest at regular
intervals.

Main() does about as little as it can. It creates a BankAccount, displays the
account, creates a SavingsAccount, accumulates one period of interest, and
displays the result, with the interest rate in parentheses, as follows:

Account 1001 - $200.00
Account 1002 - $112.50 (12.500%)
Press Enter to terminate...

Notice that the InitSavingsAccount() method invokes InitBank
Account(). This initializes the bank account–specific data members.
The InitSavingsAccount() method could have initialized these members
directly; however, it is better practice to allow the BankAccount to initialize
its own members. A class should be responsible for itself.

IS_A versus HAS_A — I’m So Confused
The relationship between SavingsAccount and BankAccount is the funda-
mental IS_A relationship seen with inheritance. In the following sections, I
show you why and then show you what the alternative, the HAS_A relation-
ship, would look like.

The IS_A relationship
The IS_A relationship between SavingsAccount and BankAccount is demon-
strated by the following modification to the class Program in the Simple
SavingsAccount program from the preceding section:

257Chapter 12: Inheritance — Is That All I Get?

19_597043 ch12.qxd 9/20/05 2:12 PM Page 257

public class Program
{
// We add this:
// DirectDeposit - deposit my paycheck automatically
public static void DirectDeposit(BankAccount ba, decimal mPay)
{
ba.Deposit(mPay);

}
public static void Main(string[] args)
{
// create a bank account and display it
BankAccount ba = new BankAccount();
ba.InitBankAccount(100);
DirectDeposit(ba, 100);
Console.WriteLine(“Account {0}”, ba.ToBankAccountString());
// now a savings account
SavingsAccount sa = new SavingsAccount();
sa.InitSavingsAccount(12.5M);
DirectDeposit(sa, 100);
sa.AccumulateInterest();
Console.WriteLine(“Account {0}”, sa.ToSavingsAccountString());
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

In effect, nothing has changed. The only real difference is that all deposits are
now being made through the local function DirectDeposit(), which isn’t
part of class BankAccount. The arguments to this function are the bank
account and the amount to deposit.

Notice (here comes the good part) that Main() could pass either a bank
account or a savings account to DirectDeposit() because a Savings
Account IS_A BankAccount and is accorded all the rights and privileges
thereto. Because SavingsAccount IS_A BankAccount, you can assign a
SavingsAccount to a BankAccount-type variable or method argument.

Gaining access to BankAccount
through containment
The class SavingsAccount could have gained access to the members of
BankAccount in a different way, as shown in the following code, where the
key line is shown in boldface:

// SavingsAccount - a bank account that draws interest
public class SavingsAccount_ // notice the underscore: this is not

// the SavingsAccount class.
{

258 Part IV: Object-Oriented Programming

19_597043 ch12.qxd 9/20/05 2:12 PM Page 258

public BankAccount bankAccount; // notice this, the contained BankAccount
public decimal mInterestRate;
// InitSavingsAccount - input the rate expressed as a
// rate between 0 and 100
public void InitSavingsAccount(BankAccount bankAccount, decimal mInterestRate)
{
this.bankAccount = bankAccount;
this.mInterestRate = mInterestRate / 100;

}
// AccumulateInterest - invoke once per period
public void AccumulateInterest()
{
bankAccount.mBalance = bankAccount.Balance

+ (bankAccount.Balance * mInterestRate);
}
// Deposit - any positive deposit is allowed
public void Deposit(decimal mAmount)
{
// delegate to the contained BankAccount object
bankAccount.Deposit(mAmount);

}
// Withdraw - you can withdraw any amount up to the
// balance; return the amount withdrawn
public double Withdraw(decimal mWithdrawal)
{
return bankAccount.Withdraw(mWithdrawal);

}
}

In this case, the class SavingsAccount_ contains a data member bank
Account (as opposed to inheriting from BankAccount). The bankAccount
object contains the balance and account number information needed by the
savings account. The SavingsAccount_ class retains the data unique to a
savings account and delegates to the contained BankAccount object as
needed. That is, when the SavingsAccount needs, say, the balance, it asks
the contained BankAccount for it.

In this case, you say that the SavingsAccount_ HAS_A BankAccount. Hard-
core object-oriented jocks say that SavingsAccount composes a Bank
Account. That is, SavingsAccount is partly composed of a BankAccount.

The HAS_A relationship
The HAS_A relationship is fundamentally different from the IS_A relationship.
This difference doesn’t seem so bad in the following example application
code segment:

// create a new savings account
BankAccount ba = new BankAccount()
SavingsAccount_ sa = new SavingsAccount_(); // special version of SavingsAccount

259Chapter 12: Inheritance — Is That All I Get?

19_597043 ch12.qxd 9/20/05 2:12 PM Page 259

sa.InitSavingsAccount(ba, 5);
// and deposit 100 dollars into it
sa.Deposit(100);
// now accumulate interest
sa.AccumulateInterest();

The problem is that a SavingsAccount_ cannot be used as a BankAccount
because it doesn’t inherit from BankAccount. Instead, it contains a
BankAccount — not the same thing at all. For example, the following code
example fails:

// DirectDeposit - deposit my paycheck automatically
void DirectDeposit(BankAccount ba, int nPay)
{
ba.Deposit(nPay);

}
void SomeFunction()
{
// the following example fails
SavingsAccount_ sa = new SavingsAccount_();
DirectDeposit(sa, 100);
// . . . continue . . .

}

DirectDeposit() can’t accept a SavingsAccount_ in lieu of a Bank
Account. No obvious relationship between the two exists as far as C# is
concerned because inheritance isn’t involved.

When to IS_A and When to HAS_A?
The distinction between the IS_A and HAS_A relationships is more than just a
matter of software convenience. This relationship has a corollary in the real
world.

For example, a Ford Explorer IS_A car (when it’s upright, that is). An Explorer
HAS_A motor. If your friend says, “Come on over in your car,” and you show
up in an Explorer, he has no grounds for complaint. He may have a complaint
if you show up carrying your Explorer’s engine in your arms, however.

The class Explorer should extend the class Car, not only to give Explorer
access to the methods of a Car but also to express the fundamental relation-
ship between the two.

Unfortunately, the beginning programmer may have Car inherit from Motor,
as an easy way to give the Car class access to the members of Motor, which
the Car needs to operate. For example, Car can inherit the method Motor.
Go(). However, this example highlights one of the problems with this

260 Part IV: Object-Oriented Programming

19_597043 ch12.qxd 9/20/05 2:12 PM Page 260

approach. Even though humans get sloppy in their speech, making a car go is
not the same thing as making a motor go. The car’s “go” operation certainly
relies on that of the motor, but they aren’t the same thing — you also have to
put the transmission in gear, release the brake, and so on.

Perhaps even more than that, inheriting from Motor misstates the facts. A car
simply is not a type of motor.

Elegance in software is a goal worth achieving in its own right. It enhances
understandability, reliability, and maintainability, plus it cures indigestion
and gout.

The hard-core object-oriented jocks recommend preferring HAS_A over IS_A
for simpler program designs.

Other Features That Support Inheritance
C# implements a set of features designed to support inheritance. I discuss
these features in the following sections.

Changing class
A program can change the class of an object. In fact, you’ve already seen this
in one example. SomeFunction() can pass a SavingsAccount object to a
method that’s expecting a BankAccount object.

You can make this conversion more explicit as follows:

BankAccount ba;
SavingsAccount sa = new SavingsAccount();

// OK:
ba = sa; // an implicit down conversion is allowed
ba = (BankAccount)sa; // the explicit cast is preferred

// Not OK:
sa = ba; // implicit up conversion not allowed

// this is OK:
sa = (SavingsAccount)ba;

The first line stores a SavingsAccount object into a BankAccount variable.
C# converts the object for you. The second line uses the cast operator to
explicitly convert the object.

The final two lines convert the BankAccount object back into a
SavingsAccount.

261Chapter 12: Inheritance — Is That All I Get?

19_597043 ch12.qxd 9/20/05 2:12 PM Page 261

The IS_A property is not reflexive. That is, even though an Explorer is a car, a
car is not necessarily an Explorer. Similarly, a BankAccount is not necessarily
a SavingsAccount, so the implicit conversion is not allowed. The final line is
allowed because the programmer has indicated her willingness to “chance
it.” She must know something.

Invalid casts at run time
Generally, casting an object from BankAccount to SavingsAccount is a dan-
gerous operation. Consider the following example:

public static void ProcessAmount(BankAccount bankAccount)
{
// deposit a large sum to the account
bankAccount.Deposit(10000.00M);
// if the object is a SavingsAccount
// then collect interest now
SavingsAccount savingsAccount = (SavingsAccount)bankAccount;
savingsAccount.AccumulateInterest();

}
public static void TestCast()
{
SavingsAccount sa = new SavingsAccount();
ProcessAmount(sa);
BankAccount ba = new BankAccount();
ProcessAmount(ba);

}

ProcessAmount() performs a few operations, including invoking the
AccumulateInterest() method. The cast of ba to a SavingsAccount
is necessary because ba is declared to be a BankAccount. The program
compiles properly because all type conversions are via explicit cast.

All goes well with the first call to ProcessAmount() from within Test(). The
SavingsAccount object sa is passed to the ProcessAmount() method. The
cast from BankAccount to SavingsAccount causes no problem because the
ba object was originally a SavingsAccount anyway.

The second call to ProcessAmount() is not so lucky, however. The cast to
SavingsAccount cannot be allowed. The ba object does not have an
AccumulateInterest() method.

An incorrect conversion generates an error during the execution of the pro-
gram (a so-called run-time error). Run-time errors are much more difficult to
find and fix than compile-time errors. Worse, they can happen to a user other
than you. Users tend not to appreciate this.

262 Part IV: Object-Oriented Programming

19_597043 ch12.qxd 9/20/05 2:12 PM Page 262

Avoiding invalid conversions using
the is and as keywords
The ProcessAmount() function would be okay if it could ensure that the
object passed to it is actually a SavingsAccount object before performing
the conversion. C# provides two keywords for this purpose: is and as.

Using the is operator
The is operator accepts an object on the left and a type on the right. The is
operator returns a true if the run-time type of the object on the left is com-
patible with the type on the right. Use it to verify that a cast is legal before
you attempt the cast.

You can modify the previous example to avoid the run-time error by using the
is operator, as follows:

public static void ProcessAmount(BankAccount bankAccount)
{
// deposit a large sum to the account
bankAccount.Deposit(10000.00M);
// if the object is a SavingsAccount . . .
if (bankAccount is SavingsAccount)
{
// ...then collect interest now (cast is guaranteed to work)
SavingsAccount savingsAccount = (SavingsAccount)bankAccount;
savingsAccount.AccumulateInterest();

}
// otherwise, don’t do the cast - but why is BankAccount not what
// you expected? this could be an error situation

}
public static void TestCast()
{
SavingsAccount sa = new SavingsAccount();
ProcessAmount(sa);
BankAccount ba = new BankAccount();
ProcessAmount(ba);

}

The added if statement checks the bankAccount object to ensure that it’s
actually of the class SavingsAccount. The is operator returns a true when
ProcessAmount() is called the first time. When passed a BankAccount
object in the second call, however, the is operator returns a false, avoiding
the illegal cast. This version of the program does not generate a run-time
error.

On the one hand, I strongly recommend that you protect all casts with the is
operator to avoid the possibility of a run-time error. On the other hand, you
should avoid casts altogether, if possible. But read on.

263Chapter 12: Inheritance — Is That All I Get?

19_597043 ch12.qxd 9/20/05 2:12 PM Page 263

Using the as operator
The as operator works a bit differently. Instead of returning a bool if the cast
would work, it actually converts the type on the left to the type on the right,
but safely returns a null if the conversion fails — rather than causing a run-
time error. You should always use the result of casting with the as operator
only if it isn’t null. So using as looks like this:

SavingsAccount savingsAccount = bankAccount as SavingsAccount;
if(savingsAccount != null)
{
// go ahead and use savingsAccount

}
// otherwise, don’t use it: generate an error message yourself

264 Part IV: Object-Oriented Programming

The object class
Consider the following related classes:

public class MyBaseClass {}
public class MySubClass : MyBaseClass {}

The relationship between the two classes
enables the programmer to make the following
run-time test:

public class Test
{
public static void

GenericFunction(MyBaseClass mc)
{
// if the object truly is a subclass

. . .
MySubClass msc = mc as MyBaseClass;
if(msc != null)
{
// ...then handle as a subclass

// . . . continue . . .
}

}
}

In this case, the function GenericFunction()
differentiates between subclasses of MyBase
Class using the as keyword.

How do you differentiate between seemingly
unrelated classes using the same as operator?
C# extends all classes from the common base

class object. That is, any class that does not
specifically inherit from another class inherits
from the class object. Thus, the following two
statements declare classes with the same base
class — object:

class MyClass1 : object {}
class MyClass2 {}

Sharing the common base class of object
allows the following generic function:

public class Test
{
public static void

GenericFunction(object o)
{
MyClass1 mc1 = o as MyClass1;
if(mc1 != null)
{
// use the converted object mc1
// . . .

}
}

}

GenericFunction() can be invoked with
any type of object. The as keyword can dig the
MyClass1 pearls from the object oysters.
(The “generic” that I’m referring to here isn’t the
kind of generic covered in Chapter 15.

19_597043 ch12.qxd 9/20/05 2:12 PM Page 264

Which one should you prefer? Generally, prefer as because it’s more efficient.
The conversion is already done with the as operator, whereas with is you
have two steps: First test with is, and second, do the cast with the cast
operator.

Unfortunately, as doesn’t work with value-type variables, so you can’t use it
with types like int, long, double, and so on, nor with char. When you’re
trying to convert a value-type object, prefer the is operator.

Inheritance and the Constructor
The InheritanceExample program from earlier in this chapter relies on
those awful Init...() functions to initialize the BankAccount and
SavingsAccount objects to a valid state. Outfitting these classes with con-
structors is definitely the right way to go, but it introduces a little complexity.
That’s why I fell back to using those ugly Init...() functions earlier until I
could cover the features in this section.

Invoking the default base class constructor
The default base class constructor is invoked any time a subclass is con-
structed. The constructor for the subclass automatically invokes the con-
structor for the base class, as the following simple program demonstrates:

// InheritingAConstructor - demonstrate that the base class
// constructor is invoked automatically
using System;
namespace InheritingAConstructor
{
public class Program
{
public static void Main(string[] args)
{
Console.WriteLine(“Creating a BaseClass object”);
BaseClass bc = new BaseClass();
Console.WriteLine(“\nNow creating a SubClass object”);
SubClass sc = new SubClass();
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
public class BaseClass
{
public BaseClass()
{
Console.WriteLine(“Constructing BaseClass”);

265Chapter 12: Inheritance — Is That All I Get?

19_597043 ch12.qxd 9/20/05 2:12 PM Page 265

}
}
public class SubClass : BaseClass
{
public SubClass()
{
Console.WriteLine(“Constructing SubClass”);

}
}

}

The constructors for BaseClass and SubClass do nothing more than output
a message to the command line. Creating the BaseClass object invokes the
default BaseClass constructor. Creating a SubClass object invokes the
BaseClass constructor before invoking its own constructor.

The output from this program is as follows:

Creating a BaseClass object
Constructing BaseClass

Now creating a SubClass object
Constructing BaseClass
Constructing SubClass
Press Enter to terminate...

A hierarchy of inherited classes is much like the floors of a building. Each
class is built on the classes that it extends, as upper floors build on lower
ones. There’s a clear reason for this: Each class is responsible for itself. A
subclass should not be held responsible for initializing the members of the
base class. The BaseClass must be given the opportunity to construct its
members before the SubClass members are given a chance to access them.
You want the horse before the cart.

Passing arguments to the base class
constructor — mama sing base
The subclass invokes the default constructor of the base class, unless speci-
fied otherwise — even from a subclass constructor other than the default.
The following, slightly updated example demonstrates this feature:

using System;
namespace Example
{
public class Program
{
public static void Main(string[] args)
{

266 Part IV: Object-Oriented Programming

19_597043 ch12.qxd 9/20/05 2:12 PM Page 266

Console.WriteLine(“Invoking SubClass() default”);
SubClass sc1 = new SubClass();
Console.WriteLine(“\nInvoking SubClass(int)”);
SubClass sc2 = new SubClass(0);
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
public class BaseClass
{
public BaseClass()
{
Console.WriteLine(“Constructing BaseClass (default)”);

}
public BaseClass(int i)
{
Console.WriteLine(“Constructing BaseClass (int)”);

}
}
public class SubClass : BaseClass
{
public SubClass()
{
Console.WriteLine(“Constructing SubClass (default)”);

}
public SubClass(int i)
{
Console.WriteLine(“Constructing SubClass (int)”);

}
}

}

Executing this program generates the following results:

Invoking SubClass()
Constructing BaseClass (default)
Constructing SubClass (default)

Invoking SubClass(int)
Constructing BaseClass (default)
Constructing SubClass (int)
Press Enter to terminate...

The program first creates a default object. As expected, C# invokes the
default SubClass constructor, which first passes control to the default
BaseClass constructor. The program then creates an object, passing an
integer argument. Again as expected, C# invokes the SubClass(int).

This constructor invokes the default BaseClass constructor, just as in the
earlier example, because it has no data to pass.

267Chapter 12: Inheritance — Is That All I Get?

19_597043 ch12.qxd 9/20/05 2:12 PM Page 267

Getting specific with base
A subclass constructor can invoke a specific base class constructor using the
keyword base.

This feature is similar to the way that one constructor invokes another within
the same class using the this keyword. See Chapter 11 for the inside scoop
on constructors and this.

For example, consider the following small program, InvokeBaseConstructor:

// InvokeBaseConstructor - demonstrate how a subclass can
// invoke the base class constructor of its
// choice using the base keyword
using System;
namespace InvokeBaseConstructor
{
public class BaseClass
{
public BaseClass()
{
Console.WriteLine(“Constructing BaseClass (default)”);

}
public BaseClass(int i)
{
Console.WriteLine(“Constructing BaseClass({0})”, i);

}
}
public class SubClass : BaseClass
{
public SubClass()
{
Console.WriteLine(“Constructing SubClass (default)”);

}
// here’s where the base keyword is used
public SubClass(int i1, int i2) : base(i1)
{
Console.WriteLine(“Constructing SubClass({0}, {1})”, i1, i2);

}
}
public class Program
{
public static void Main(string[] args)
{
Console.WriteLine(“Invoking SubClass()”);
SubClass sc1 = new SubClass();
Console.WriteLine(“\nInvoking SubClass(1, 2)”);
SubClass sc2 = new SubClass(1, 2);
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

268 Part IV: Object-Oriented Programming

19_597043 ch12.qxd 9/20/05 2:12 PM Page 268

The output from this program is as follows:

Invoking SubClass()
Constructing BaseClass (default)
Constructing SubClass (default)

Invoking SubClass(1, 2)
Constructing BaseClass(1)
Constructing SubClass(1, 2)
Press Enter to terminate...

This version begins the same as the previous examples, by creating a default
SubClass object using the default constructor of both BaseClass and
SubClass.

The second object is created with the expression new SubClass(1, 2). C#
invokes the SubClass(int, int) constructor, which uses the base keyword
to pass one of the values on to the BaseClass(int) constructor.
Presumably, SubClass passes the first argument to the base class for pro-
cessing and continues on using the second value itself.

The Updated BankAccount Class
The program ConstructorSavingsAccount, found on the enclosed CD, is an
updated version of the SimpleBankAccount program. In this version, how-
ever, the SavingsAccount constructor can pass information back up to the
BankAccount constructors. Only Main() and the constructors themselves
are shown here:

// ConstructorSavingsAccount - implement a SavingsAccount as

// a form of BankAccount; don’t use any
// virtual methods but do implement the
// constructors properly
using System;
namespace ConstructorSavingsAccount
{
// BankAccount - simulate a bank account each of which
// carries an account ID (which is assigned
// upon creation) and a balance
public class BankAccount
{
// bank accounts start at 1000 and increase sequentially from there
public static int nNextAccountNumber = 1000;
// maintain the account number and balance for each object
public int nAccountNumber;
public decimal mBalance;
// Constructors
public BankAccount(): this(0)

269Chapter 12: Inheritance — Is That All I Get?

19_597043 ch12.qxd 9/20/05 2:12 PM Page 269

{
}
public BankAccount(decimal mInitialBalance)
{
nAccountNumber = ++nNextAccountNumber;
mBalance = mInitialBalance;

}
// . . . same stuff here . . .

}
// SavingsAccount - a bank account that draws interest
public class SavingsAccount : BankAccount
{
public decimal mInterestRate;
// constructors - input the rate expressed as a
// rate between 0 and 100
public SavingsAccount(decimal mInterestRate) : this(mInterestRate, 0)
{
}
public SavingsAccount(decimal mInterestRate, decimal mInitial) :

base(mInitial)
{
this.mInterestRate = mInterestRate / 100;

}
// . . . same stuff here . . .

}
public class Program
{
// DirectDeposit - deposit my paycheck automatically
public static void DirectDeposit(BankAccount ba, decimal mPay)
{
ba.Deposit(mPay);

}
public static void Main(string[] args)
{
// create a bank account and display it
BankAccount ba = new BankAccount(100);
DirectDeposit(ba, 100);
Console.WriteLine(“Account {0}”, ba.ToBankAccountString());
// now a savings account
SavingsAccount sa = new SavingsAccount(12.5M);
DirectDeposit(sa, 100);
sa.AccumulateInterest();
Console.WriteLine(“Account {0}”, sa.ToSavingsAccountString());
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

270 Part IV: Object-Oriented Programming

19_597043 ch12.qxd 9/20/05 2:12 PM Page 270

BankAccount defines two constructors: one that accepts an initial account bal-
ance and the default constructor, which does not. To avoid duplicating code
within the constructor, the default constructor invokes the BankAccount
(initial balance) constructor using the this keyword.

The SavingsAccount class provides two constructors, as well. The Savings
Account(interest rate) constructor invokes the SavingsAccount
(interest rate, initial balance) constructor, passing an initial bal-
ance of 0. This most general constructor passes the initial balance to the
BankAccount(initial balance) constructor using the base keyword, as
shown graphically in Figure 12-1.

I’ve modified Main() to get rid of those infernal Init...() functions,
replacing them with constructors instead. The output from this program
is the same.

The Destructor
C# also provides a method that’s inverse to the constructor, called the
destructor. The destructor carries the name of the class with a tilde (~)
in front. For example, the ~BaseClass() method is the destructor for
BaseClass.

C# invokes the destructor when it is no longer using the object. The default
destructor is the only destructor that can be created because the destructor
cannot be invoked directly. In addition, the destructor is always virtual. I
explain virtual methods in Chapter 13.

When an inheritance ladder of classes is involved, the destructors are
invoked in the reverse order of the constructors. That is, the destructor for
the subclass is invoked before the destructor for the base class.

Bank Account (0)
 passes balance to base class

Savings Account (12.5%), 0)
 defaults balance to 0

Savings Account (12.5%)

Figure 12-1:
The path

taken when
constructing
a Savings
Account

object using
the default

constructor.

271Chapter 12: Inheritance — Is That All I Get?

19_597043 ch12.qxd 9/20/05 2:12 PM Page 271

272 Part IV: Object-Oriented Programming

Garbage collection and the C# destructor
The destructor method in C# is much less useful
than it is in some other object-oriented lan-
guages, such as C++, because C# has nonde-
terministic destruction. Understanding what
that means and why it’s important requires
some explanation.

The memory for an object is borrowed from the
heap when the program executes the new com-
mand, as in new SubClass(). This block of
memory remains reserved as long as any valid
references to that memory are running around.
You may have several variables that reference
the same object.

The memory is said to be “unreachable” when
the last reference goes out of scope. In other
words, no one can access that block of memory
after no more references to it exist.

C# doesn’t do anything in particular when
a memory block first becomes unreachable.
A low-priority system task executes in the
background, looking for unreachable memory
blocks. This so-called “garbage collector”
executes when little is happening in your pro-
gram to avoid negatively affecting program per-
formance. As the garbage collector finds

unreachable memory blocks, it returns them to
the heap.

Normally, the garbage collector operates silently
in the background. The garbage collector only
takes over control of the program for a short
period when heap memory begins to run out.

The C# destructor, for example ~BaseClass(),
is nondeterministic because it is not invoked until
the object is garbage collected, and that could
occur long after the object is no longer being
used. In fact, if the program terminates before
the object is found and returned to the heap, the
destructor is never invoked. Nondeterministic
means you can’t predict when the object will be
garbage collected. It could take quite a while
before the object is garbage collected and its
destructor called.

The net effect is that C# programmers cannot
rely on the destructor to operate automatically,
as they can in languages such as C++, so they
seldom use it. C# has other ways to return bor-
rowed system resources when they’re no
longer needed, using a Dispose() method, a
topic that is beyond the scope of this book.

19_597043 ch12.qxd 9/20/05 2:12 PM Page 272

Chapter 13

Poly-what-ism?
In This Chapter
� Deciding whether to hide or override a base class method — so many choices!

� Building abstract classes — are you for real?

� Declaring a method and the class that contains it to be abstract

� Starting a new hierarchy on top of an existing one

� Sealing a class from being subclassed

Inheritance allows one class to “adopt” the members of another. Thus,
I can create a class SavingsAccount that inherits data members like

account id and methods like Deposit() from a base class BankAccount.
That’s nice, but this definition of inheritance is not sufficient to mimic what’s
going on out there in the trenches.

Drop back 10 yards to Chapter 12 if you don’t remember much about class
inheritance.

A microwave oven is a type of oven, not because it looks like an oven,
but because it performs the same functions as an oven. A microwave oven
may perform additional functions, but at the least, it performs the base
oven functions — most importantly, heating up my nachos when I say,
“StartCooking.” (I rely on my object of class Refrigerator to cool the
beer.) I don’t particularly care what the oven must do internally to make
that happen, any more than I care what type of oven it is, who made it, or
whether it was on sale when my wife bought it. . . . Hey, wait, I do care about
that last one.

From our human vantage point, the relationship between a microwave oven
and a conventional oven doesn’t seem like such a big deal, but consider the
problem from the oven’s point of view. The steps that a conventional oven
performs internally are completely different from those that a microwave
oven may take (not to mention those that a convection oven performs).

20_597043 ch13.qxd 9/20/05 2:14 PM Page 273

The power of inheritance lies in the fact that a subclass doesn’t have to inherit
every single method from the base class just the way it’s written. A subclass
can inherit the essence of the base class method while implementing the details
differently.

Overloading an Inherited Method
As described in Chapter 7, two or more functions can have the same name as
long as the number and/or types of the arguments differ.

It’s a simple case of function overloading
Giving two functions the same name is called overloading, as in “Keeping
them straight is overloading my brain.”

The arguments of a function become a part of its extended name, as the fol-
lowing example demonstrates:

public class MyClass
{
public static void AFunction()
{
// do something

}
public static void AFunction(int)
{
// do something else

}
public static void AFunction(double d)
{
// do something even different

}
public static void Main(string[] args)
{
AFunction();
AFunction(1);
AFunction(2.0);

}

C# can differentiate the methods by their arguments. Each of the calls within
Main() accesses a different function.

274 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 274

The return type is not part of the extended name. You can’t have two func-
tions that differ only in their return type.

Different class, different method
Not surprisingly, the class to which a function or method belongs is also a
part of its extended name. Consider the following code segment:

public class MyClass
{
public static void AFunction();
public void AMethod();

}
public class UrClass
{
public static void AFunction();
public void AMethod();

}
public class Program
{
public static void Main(string[] args)
{
UrClass.AFunction(); // call static function
// invoke the MyClass.AMethod() member function
MyClass mcObject = new MyClass();
mcObject.AMethod();

}
}

The name of the class is a part of the extended name of the function. The
function MyClass.AFunction() has about as much to do with UrClass.
AFunction() as YourCar.StartOnAColdMorning() and MyCar.Start
OnAColdMorning() — at least yours works.

Peek-a-boo — hiding a
base class method
Okay, so a method in one class can overload another method in its own class
by having different arguments. As it turns out, a method can also overload a
method in its base class. Overloading a base class method is known as hiding
the method.

275Chapter 13: Poly-what-ism?

20_597043 ch13.qxd 9/20/05 2:14 PM Page 275

Suppose your bank adopts a policy that makes savings account withdrawals
different from other types of withdrawals. Suppose, just for the sake of argu-
ment, that withdrawing from a savings account costs $1.50.

Taking the functional approach, you could implement this policy by setting a
flag (variable) in the class to indicate whether the object is a SavingsAccount
or just a simple BankAccount. Then the withdrawal method would have to
check the flag to decide whether it needs to charge the $1.50, as shown in the
following code:

public class BankAccount
{
private decimal mBalance;
private bool isSavingsAccount;
// indicate the initial balance and whether the
// account that you’re creating is a savings
// account or not
public BankAccount(decimal mInitialBalance,

bool isSavingsAccount)
{
mBalance = mInitialBalance;
this.isSavingsAccount = isSavingsAccount;

}
public decimal Withdraw(decimal mAmount)
{
// if the account is a savings account . . .
if (isSavingsAccount)
{
// ...then skim off $1.50
mBalance -= 1.50M;

}
// continue with the same withdraw code:
if (mAmountToWithdraw > mBalance)
{
mAmountToWithdraw = mBalance;

}
mBalance -= mAmountToWithdraw;
return mAmountToWithdraw;

}
}
class MyClass
{
public void SomeFunction()
{
// I wanna create me a savings account:
BankAccount ba = new BankAccount(0, true);

}
}

Your function must tell the BankAccount whether it’s a SavingsAccount in
the constructor by passing a flag. The constructor saves off that flag and uses
it in the Withdraw() method to decide whether to charge the extra $1.50.

276 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 276

The more object-oriented approach hides the method Withdraw() in the
base class BankAccount with a new method of the same name, height, and
hair color in the SavingsAccount class, as follows:

// HidingWithdrawal - hide the withdraw method in the
// base class with a subclass method
// of the same name
using System;
namespace HidingWithdrawal
{
// BankAccount - a very basic bank account
public class BankAccount
{
protected decimal mBalance;
public BankAccount(decimal mInitialBalance)
{
mBalance = mInitialBalance;

}
public decimal Balance
{
get { return mBalance; }

}
public decimal Withdraw(decimal mAmount)
{
decimal mAmountToWithdraw = mAmount;
if (mAmountToWithdraw > Balance) // use the Balance property
{
mAmountToWithdraw = Balance;

}
mBalance -= mAmountToWithdraw; // can’t use Balance property: no set
return mAmountToWithdraw;

}
}
// SavingsAccount - a bank account that draws interest
public class SavingsAccount : BankAccount
{
public decimal mInterestRate;
// SavingsAccount - input the rate expressed as a
// rate between 0 and 100
public SavingsAccount(decimal mInitialBalance,

decimal mInterestRate)
: base(mInitialBalance)

{
this.mInterestRate = mInterestRate / 100;

}
// AccumulateInterest - invoke once per period
public void AccumulateInterest()
{
mBalance = Balance + (Balance * mInterestRate); // Balance property

}
// Withdraw - you can withdraw any amount up to the
// balance; return the amount withdrawn
public decimal Withdraw(decimal mWithdrawal)

277Chapter 13: Poly-what-ism?

20_597043 ch13.qxd 9/20/05 2:14 PM Page 277

{
// take our $1.50 off the top
base.Withdraw(1.5M);
// now you can withdraw from what’s left
return base.Withdraw(mWithdrawal);

}
}
public class Program
{
public static void MakeAWithdrawal(BankAccount ba, decimal mAmount)
{
ba.Withdraw(mAmount);

}
public static void Main(string[] args)
{
BankAccount ba;
SavingsAccount sa;
// create a bank account, withdraw $100, and
// display the results
ba = new BankAccount(200M);
ba.Withdraw(100M);
// try the same trick with a savings account
sa = new SavingsAccount(200M, 12);
sa.Withdraw(100M);
// display the resulting balance
Console.WriteLine(“When invoked directly:”);
Console.WriteLine(“BankAccount balance is {0:C}”, ba.Balance);
Console.WriteLine(“SavingsAccount balance is {0:C}”, sa.Balance);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

Main() in this case creates a BankAccount object with an initial balance of $200
and then withdraws $100. Main() repeats the trick with a SavingsAccount
object. When Main() withdraws money from the base class, BankAccount.
Withdraw() performs the withdraw function with great aplomb. When Main()
then withdraws $100 from the savings account, the method SavingsAccount.
Withdraw() tacks on the extra $1.50.

Notice that the SavingsAccount.Withdraw() method uses BankAccount.
Withdraw() rather than manipulating the balance directly. If possible, let the
base class maintain its own data members.

What makes the hiding approach better than adding a simple test?
On the surface, adding a flag to the BankAccount.Withdraw() method may
seem simpler than all this method-hiding stuff. After all, it’s just four little
lines of code, two of which are nothing more than braces.

278 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 278

The problems are manifold — I’ve been waiting all these chapters to use
that word. One problem is that the BankAccount class has no business wor-
rying about the details of SavingsAccount. That would break the “Render
unto Caesar” rule. More formally, it’s called “breaking the encapsulation of
SavingsAccount.” Base classes don’t normally know about their subclasses.
That leads to the real problem: Suppose your bank subsequently decides to
add a CheckingAccount or a CDAccount or a TBillAccount. Those are all
likely additions, and they all have different withdrawal policies, each requiring
its own flag. After three or four different types of accounts, the old Withdraw()
method starts looking pretty complicated. Each of those types of classes
should worry about its own withdrawal policies and leave the poor old
BankAccount.Withdraw() alone. Classes are responsible for themselves.

What about accidentally hiding a base class method?
You could hide a base class method accidentally. For example, you may have a
Vehicle.TakeOff() method that starts the vehicle rolling. Later, someone else
extends your Vehicle class with an Airplane class. Its TakeOff() method is
entirely different. Clearly, this is a case of mistaken identity — the two methods
have no similarity other than their identical name.

Fortunately, C# detects this problem.

C# generates an ominous-looking warning when it compiles the earlier
HidingWithdrawal example program. The text of the warning message
is long, but here’s the important part:

‘...SavingsAccount.Withdraw(decimal)’ hides inherited member
‘...BankAccount.Withdraw(decimal)’. Use the new keyword if hiding
was intended.

C# is trying to tell you that you’ve written a method in a subclass with the same
name as a method in the base class. Is that what you really meant to do?

This message is just a warning. You don’t even notice it unless you switch
over to the Error List window to take a look. But it’s very important to sort
out and fix all warnings. In almost every case, a warning is telling you about
something that could bite you if you don’t fix it.

It’s a good idea to tell the C# compiler to treat warnings as errors, at least
part of the time. To do so, choose Project➪Properties. In the Build pane of
your project’s properties page, scroll down to Errors and Warnings. Set the
Warning Level to 4, the highest level. This turns the compiler into more of a
chatterbox. Also, in the Treat Warnings as Errors section, select All. (If a par-
ticular warning gets annoying, you can list it in the Suppress Warnings box to
keep it out of your face.) When you treat warnings as errors, you’re forced to
fix the warnings just as you are to fix real compiler errors. This makes for better
code. Even if you don’t enable Treat Warnings as Errors, it’s helpful to leave
the Warning Level at 4 and check the Error List window after each build.

279Chapter 13: Poly-what-ism?

20_597043 ch13.qxd 9/20/05 2:14 PM Page 279

The descriptor new, shown in the following code, tells C# that the hiding of
methods is intentional and not the result of some oversight (and makes the
warning go away):

// no withdraw() pains now
new public decimal Withdraw(decimal mWithdrawal)
{
// . . . no change internally . . .

}

This use of the keyword new has nothing to do with the same word new that’s
used to create an object.

Calling back to base
Return to the SavingsAccount.Withdraw() method in the HidingWithdrawal
example shown earlier in this chapter. The call to BankAccount.Withdraw()
from within this new method includes the new keyword base.

The following version of the function without the base keyword doesn’t work:

new public decimal Withdraw(decimal mWithdrawal)
{
decimal mAmountWithdrawn = Withdraw(mWithdrawal);
mAmountWithdrawn += Withdraw(1.5);

return mAmountWithdrawn;
}

This call has the same problem as the following one:

void fn()
{
fn(); // call yourself

}

The call to fn() from within fn() ends up calling itself — recursing — over
and over. Similarly, a call to Withdraw() from within the function calls itself
in a loop, chasing its tail until the program eventually crashes.

Somehow, you need to indicate to C# that the call from within Savings
Account.Withdraw() is meant to invoke the base class BankAccount.
Withdraw() method. One approach is to cast the this pointer into an object
of class BankAccount before making the call, as follows:

280 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 280

// Withdraw - this version accesses the hidden method in the base
// class by explicitly recasting the “this” object
new public decimal Withdraw(decimal mWithdrawal)
{
// cast the this pointer into an object of class BankAccount
BankAccount ba = (BankAccount)this;
// invoking Withdraw() using this BankAccount object
// calls the function BankAccount.Withdraw()
decimal mAmountWithdrawn = ba.Withdraw(mWithdrawal);
mAmountWithdrawn += ba.Withdraw(1.5);

return mAmountWithdrawn;
}

This solution works: The call ba.Withdraw() now invokes the BankAccount
method, just as intended. The problem with this approach is the explicit ref-
erence to BankAccount. A future change to the program may rearrange the
inheritance hierarchy so that SavingsAccount no longer inherits directly
from BankAccount. Such a rearrangement breaks this function in a way that
future programmers may not easily find. Heck, I would never be able to find a
bug like that.

You need a way to tell C# to call the Withdraw() function from “the class
immediately above” in the hierarchy without naming it explicitly. That would
be the class that SavingsAccount extends. C# provides the keyword base
for this purpose.

This is the same keyword base that a constructor uses to pass arguments to
its base class constructor.

The C# keyword base, shown in the following code, is the same sort of beast
as this but is recast to the base class no matter what that class may be:

// Withdraw - you can withdraw any amount up to the
// balance; return the amount withdrawn
new public decimal Withdraw(decimal mWithdrawal)
{
// take our $1.50 off the top
base.Withdraw(1.5M);
// now you can withdraw from what’s left
return base.Withdraw(mWithdrawal);

}

The call base.Withdraw() now invokes the BankAccount.Withdraw()
method, thereby avoiding the recursive “invoking itself” problem. In addition,
this solution won’t break if the inheritance hierarchy is changed.

281Chapter 13: Poly-what-ism?

20_597043 ch13.qxd 9/20/05 2:14 PM Page 281

Polymorphism
You can overload a method in a base class with a method in the subclass.
As simple as this sounds, it introduces considerable capability, and with
capability comes danger.

Here’s a thought experiment: Should the decision to call BankAccount.
Withdraw() or SavingsAccount.Withdraw() be made at compile time or
run time?

To understand the difference, I’ll change the previous HidingWithdrawal
program in a seemingly innocuous way. I call this new version Hiding
WithdrawalPolymorphically. (I’ve streamlined the listing by leaving out
the stuff that doesn’t change.) The new version is as follows:

// HidingWithdrawalPolymorphically - hide the Withdraw() method in the base
// class with a method in the subclass of the same name
public class Program
{
public static void MakeAWithdrawal(BankAccount ba, decimal mAmount)
{
ba.Withdraw(mAmount);

}
public static void Main(string[] args)
{
BankAccount ba;
SavingsAccount sa;
ba = new BankAccount(200M);
MakeAWithdrawal(ba, 100M);
sa = new SavingsAccount(200M, 12);
MakeAWithdrawal(sa, 100M);
// display the resulting balance
Console.WriteLine(“\nWhen invoked through intermediary”);
Console.WriteLine(“BankAccount balance is {0:C}”, ba.Balance);
Console.WriteLine(“SavingsAccount balance is {0:C}”, sa.Balance);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

The following output from this program may or may not be confusing,
depending on what you expected:

When invoked through intermediary
BankAccount balance is $100.00
SavingsAccount balance is $100.00
Press Enter to terminate...

282 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 282

This time, rather than performing a withdrawal in Main(), the program
passes the bank account object to the function MakeAWithdrawal().

The first question is fairly straightforward: Why does the MakeAWithdrawal()
function even accept a SavingsAccount object when it clearly states that it
is looking for a BankAccount? The answer is obvious: “Because a Savings
Account IS_A BankAccount.” (See Chapter 12.)

The second question is subtle. When passed a BankAccount object,
MakeAWithdrawal() invokes BankAccount.Withdraw() — that’s clear
enough. But when passed a SavingsAccount object, MakeAWithdrawal()
calls the same method. Shouldn’t it invoke the Withdraw() method in the
subclass?

The prosecution intends to show that the call ba.Withdraw() should
invoke the method BankAccount.Withdraw(). Clearly, the ba object is
a BankAccount. To do anything else would merely confuse the state.
The defense has witnesses back in Main() to prove that although the ba
object is declared BankAccount, it is, in fact, a SavingsAccount. The jury
is deadlocked. Both arguments are equally valid.

In this case, C# comes down on the side of the prosecution. The safer of the
two possibilities is to go with the declared type because it avoids any mis-
communication. The object is declared to be a BankAccount, and that’s that.

What’s wrong with using the
declared type every time?
In some cases, you don’t want to go with the declared type. “What you want,
what you really, really want . . .” is to make the call based on the real type —
that is, the run-time type — as opposed to the declared type. For example,
you want to go with the SavingsAccount actually stored in a BankAccount
variable. This capability to decide at run time is called polymorphism or late
binding. Going with the declared type every time is called early binding because
that sounds like the opposite of late binding.

The ridiculous term polymorphism comes from the Greek: poly meaning more
than one, morph meaning action, and ism meaning some ridiculous Greek term.
But we’re stuck with it.

Polymorphism and late binding are not exactly the same. The difference is
subtle, however. Polymorphism refers to the ability to decide which method
to invoke at run time. Late binding refers to the way a language implements
polymorphism.

283Chapter 13: Poly-what-ism?

20_597043 ch13.qxd 9/20/05 2:14 PM Page 283

Polymorphism is key to the power of object-oriented (OO) programming. It’s
so important that languages that don’t support polymorphism can’t advertise
themselves as OO languages. (I think it’s an FDA regulation: You can’t label a
language that doesn’t support it as OO unless you add a disclaimer from the
Surgeon General, or something like that.)

Languages that support classes but not polymorphism are called object-based
languages. Ada is an example of such a language.

Without polymorphism, inheritance has little meaning. Let me spring yet
another example on you to show you why. Suppose you had written this
really boffo program that used some class called, just to pick a name out of
the air, Student. After months of design, coding, and testing, you release this
application to rave reviews from colleagues and critics alike. (There’s even
talk of starting a new Nobel prize category for software, but you modestly
brush such talk aside.)

Time passes, and your boss asks you to add to this program the capability of
handling graduate students, who are similar but not identical to undergraduate
students. (The graduate students probably claim that they’re not similar at all.)
Suppose that the formula for calculating the tuition for a graduate student is
completely different from that for an undergrad. Now, your boss doesn’t know
or care that, deep within the program, there are numerous calls to the member
function CalcTuition(). (There’s a lot that he doesn’t know or care about,
by the way.) The following shows one of those many calls to CalcTuition():

void SomeFunction(Student s) // could be grad or undergrad
{
// . . . whatever it might do . . .
s.CalcTuition();
// . . . continues on . . .

}

If C# didn’t support late binding, you would need to edit someFunction() to
check whether the student object passed to it is a GraduateStudent or
a Student. The program would call Student.CalcTuition() when s is a
Student and GraduateStudent.CalcTuition() when it’s a graduate student.

That doesn’t seem so bad, except for two things:

� This is only one function. Suppose that CalcTuition() is called from
many places.

� Suppose that CalcTuition() is not the only difference between the two
classes. The chances are not good that you will find all the items that need
to be changed.

With polymorphism, you can let C# decide which method to call.

284 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 284

Using “is” to access a hidden
method polymorphically
How can you make your program polymorphic? C# provides one approach
to solving the problem manually in the keyword: is. (I introduce is, and its
cousin, as, in Chapter 12.) The expression ba is SavingsAccount returns a
true or a false depending on the run-time class of the object. The declared
type may be BankAccount, but what type is it really? The following code uses
is to access the SavingsAccount version of Withdraw() specifically:

public class Program
{
public static void MakeAWithdrawal(BankAccount ba, decimal mAmount)
{
if ba is SavingsAccount
{
SavingsAccount sa = (SavingsAccount)ba;
sa.Withdraw(mAmount);

} else
{
ba.Withdraw(mAmount);

}
}

}

Now, when Main() passes the function a SavingsAccount object, MakeA
Withdrawal() checks the run-time type of the ba object and invokes
SavingsAccount.Withdraw().

Just as an aside, the programmer could have performed the cast and the call
in the following single line:

((SavingsAccount)ba).Withdraw(mAmount);

I mention this only because you see it a lot in programs written by show-offs.
(It’s okay but harder to read than using multiple lines. This makes it more
error-prone, too.)

Actually, the “is” approach works but it’s a really bad idea. The is approach
requires MakeAWithDrawal() to be aware of all the different types of bank
accounts and which of them are represented by different classes. That puts
too much responsibility on poor old MakeAWithdrawal(). Right now, your
application handles only two types of bank accounts, but suppose your boss
asks you to implement a new account type, CheckingAccount, and this new
account has different Withdraw() requirements. Your program won’t work
properly if you don’t search out and find every function that checks the run-
time type of its argument. Doh!

285Chapter 13: Poly-what-ism?

20_597043 ch13.qxd 9/20/05 2:14 PM Page 285

Declaring a method virtual
As the author of MakeAWithdrawal(), you don’t want to know about all the
different types of accounts. You want to leave it up to the programmers that
use MakeAWithdrawal() to know about their account types and leave you
alone. You want C# to make decisions about which methods to invoke based
on the run-time type of the object.

You tell C# to make the run-time decision of the version of Withdrawal() by
marking the base class function with the keyword virtual and each subclass
version of the function with the keyword override.

I’ve rewritten the previous example program using polymorphism. I have added
output statements to the Withdraw() methods to prove that the proper meth-
ods are indeed being invoked. (I’ve cut out the duplicated stuff to avoid boring
you any more than you already are.) Here’s the PolymorphicInheritance
program:

// PolymorphicInheritance - hide a method in the
// base class polymorphically
using System;
namespace PolymorphicInheritance
{
// BankAccount - a very basic bank account
public class BankAccount
{
// . . . the same stuff here . . .
public virtual decimal Withdraw(decimal mAmount)
{
Console.WriteLine(“In BankAccount.Withdraw() for ${0}...”, mAmount);
decimal mAmountToWithdraw = mAmount;
if (mAmountToWithdraw > Balance)
{
mAmountToWithdraw = Balance;

}
mBalance -= mAmountToWithdraw;
return mAmountToWithdraw;

}
}
// SavingsAccount - a bank account that draws interest
public class SavingsAccount : BankAccount
{
// . . . same stuff here, too . . .
// Withdraw - you can withdraw any amount up to the
// balance; return the amount withdrawn
override public decimal Withdraw(decimal mWithdrawal)
{
Console.WriteLine(“In SavingsAccount.Withdraw()...”);
Console.WriteLine(“Invoking base-class Withdraw twice...”);

286 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 286

// take our $1.50 off the top
base.Withdraw(1.5M);
// now you can withdraw from what’s left
return base.Withdraw(mWithdrawal);

}
}
public class Program
{
public static void MakeAWithdrawal(BankAccount ba,

decimal mAmount)
{
ba.Withdraw(mAmount); // calls the right method

}
public static void Main(string[] args)
{
// . .. only changed some WriteLines here . . .

}
}

}

The output from executing this program is as follows:

Withdrawal: MakeAWithdrawal(ba, ...)
In BankAccount.Withdraw() for $100...
BankAccount balance is $100.00
Withdrawal: MakeAWithdrawal(sa, ...)
In SavingsAccount.Withdraw()...
Invoking base-class Withdraw twice...
In BankAccount.Withdraw() for $1.5...
In BankAccount.Withdraw() for $100...
SavingsAccount balance is $98.50
Press Enter to terminate...

The Withdraw() method is flagged as virtual in the base class BankAccount,
while the Withdraw() method in the subclass is flagged with the keyword
override. The MakeAWithdrawal() method is unchanged and yet the output
of the program is different because the call ba.Withdraw() is resolved based
on ba’s run-time type.

To get a good feel for how this works, you really need to step through the
program in the Visual Studio 2005 debugger. Just build the program as normal
and then repeatedly press F11 to watch the program go through its paces.
It’s impressive to watch the same call end up in two different methods at
two different times.

Be sparing in which methods you make virtual. They have a cost, so use the
virtual keyword only when you must. It’s a trade-off between a class that’s
highly flexible and overridable (lots of virtual methods) and a class that’s not
flexible enough (hardly any virtuals).

287Chapter 13: Poly-what-ism?

20_597043 ch13.qxd 9/20/05 2:14 PM Page 287

C# During Its Abstract Period
A duck is a type of bird, I think. So are a cardinal and a hummingbird. In fact,
every bird out there is actually some subtype of bird. The flip side of that argu-
ment is that no bird exists that isn’t some subtype of bird. That doesn’t sound
too profound, but in a way, it is. The software equivalent of that statement is
that all bird objects are instances of some subclass of Bird — there’s never
an instance of class Bird. What’s a bird? It’s always a robin or a grackle or
some other specific species.

Different types of birds share many properties (otherwise, they wouldn’t be
birds), but no two types share every property. If they did, they wouldn’t be
different types. To pick a particularly gross example, not all birds Fly() the
same way. Ducks have one style. The cardinal’s style is similar but not identical.
The hummingbird’s style is completely different. Don’t even get me started
about emus and ostriches or the rubber ducky in my tub.

But if birds don’t all fly the same way, and there’s no such thing as a Bird,
then what the heck is Bird.Fly()? The subject of the following sections,
that’s what.

Class factoring
People generate taxonomies of objects by factoring out commonalities. To see
how factoring works, consider two classes, HighSchool and University, as
shown in Figure 13-1. This figure uses the Unified Modeling Language (UML),
a graphical language that describes a class along with the relationship of that
class to others. UML has become universally popular with programmers.

A Car IS_A Vehicle but a Car HAS_A Motor.

High School

– numStudents Student

+ Enroll ()

*
University

– numStudents
+ nAvgSAT

Student

+ Enroll ()
+ GetGrant ()

*

Figure 13-1:
A UML

description
of the High

School
and Uni-
versity

classes.

288 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 288

You can see in Figure 13-1 that high schools and universities have several
similar properties — actually many more than you may think. Both schools
offer a publicly available Enroll() method for adding Student objects to
the school. In addition, both classes offer a private member numStudents
that indicates the number of students attending the school. One final common
feature is the relationship between students: One school can have any number
of students — a student can attend only a single school at one time. Even high
schools and most universities offer more than I’ve described, but one of each
type of member is all I need.

In addition to the features of a high school, the university contains a method
GetGrant() and a data member nAvgSAT. High schools don’t have an SAT
entrance requirement, and they don’t get federal grants — unless I went to
the wrong high school.

Figure 13-1 is fine, as far as it goes, but lots of information is duplicated, and
duplication in code stinks. You could reduce the duplication by allowing the
more complex class University to inherit from the simpler HighSchool
class, as shown in Figure 13-2.

The HighSchool class is left unchanged, but the University class is easier
to describe. We say that “a University is a HighSchool that also has an
nAvgSAT and a GetGrant() method.” But this solution has a fundamental
problem: A university is not a high school with special properties.

You say, “So what? Inheriting works, and it saves effort.” True, but my reser-
vations are more than stylistic trivialities. My reservations are at some of the
best restaurants in town — at least, that’s what all the truckers say. Such mis-
representations are confusing to the programmer, both now and in the future.
Someday, a programmer who is unfamiliar with your programming tricks will
have to read and understand what your code does. Misleading representations
are difficult to reconcile and understand.

High School

– numStudents Student

+ Enroll ()

University

+ nAvgSAT

+ GetGrant ()

*
Figure 13-2:

Inheriting
High

School
simplifies
the Uni-
versity

class, but it
introduces
problems.

289Chapter 13: Poly-what-ism?

20_597043 ch13.qxd 9/20/05 2:14 PM Page 289

In addition, such misrepresentations can lead to problems down the road.
Suppose the high school decides to name a “favorite” student at the prom —
not that I would know anything about that sort of thing. The clever programmer
adds the NameFavorite() method to the HighSchool class, which the appli-
cation invokes to name the favorite Student object.

But now you have a problem. Most universities don’t name a favorite anything,
other than price. However, as long as University inherits from HighSchool,
it inherits the NameFavorite() method. One extra method may not seem like
a big deal. “Just ignore it,” you say.

One extra method isn’t a big deal, but it’s just one more brick in the wall of
confusion. Extra methods and properties accumulate over time, until the
University class is carrying lots of extra baggage. Pity the poor software
developer that has to understand which methods are “real” and which are not.

290 Part IV: Object-Oriented Programming

UML Lite
The Unified Modeling Language (UML) is an
expressive language that’s capable of clearly
defining a great deal about the relationships of
objects within a program. One advantage of UML
is that you can ignore the more specific language
features without losing the meaning entirely.

The most basic features of UML are as follows:

� Classes are represented by a box divided
vertically into three sections. The name of the
class appears in the uppermost section.

� The data members of the class appear in
the middle section, and the methods of the
class in the bottom. You can omit either the
middle or bottom section if the class has no
data members or methods.

� Members with a plus sign (+) in front are
public; those with a minus sign (–) are private.
UML doesn’t have a symbol to describe pro-
tected and internal visibility, but some people
use the pound sign (#) — or should I say the
“sharp” sign?

A private member is only accessible from
other members of the same class. A public
member is accessible to all classes.

� The label {abstract} next to the name indi-
cates an abstract class or method.

UML actually uses a different symbol for an
abstract method, but I’ll keep it simple. This
is UML Lite.

� An arrow between two classes represents
a relationship between the two classes.
A number above the line expresses
cardinality — the number of items you can
have at each end of the arrow. The asterisk
symbol (*) means any number. If no number is
present, the cardinality is assumed to be 1.
Thus, in Figure 13-1, you can see that a single
university has any number of students — a
one-to-many relationship.

� A line with a large, open arrowhead, or a
triangular arrowhead, expresses the IS_A
relationship (inheritance). The arrow points
up the class hierarchy to the base class.
Other types of relationships include the
HAS_A relationship (a line with a filled dia-
mond at the owning end).

20_597043 ch13.qxd 9/20/05 2:14 PM Page 290

“Inheritances of convenience” lead to another problem. The way it’s written,
Figure 13-2 implies that a University and a HighSchool have the same
enrollment procedure. As unlikely as that sounds, assume that it’s true.
The program is developed, packaged up, and shipped off to the unwitting
public — of course, I’ve embedded the requisite number of bugs so they’ll
want to upgrade to Version 2 with all the bug fixes — for a small fee, of course.

Months pass before the school district decides to modify the enrollment
procedure. It won’t be obvious to anyone that by modifying the high school
enrollment procedure, they’ve also modified the sign-up procedure at the
local college.

How can you avoid these problems? Not going to school is one way, but another
would be to fix the source of the problem: A university is not a particular type
of high school. A relationship exists between the two, but IS_A is not the right
one. (HAS_A doesn’t work either. A university HAS_A high school? A high
school HAS_A university? Come on!) Instead, both high schools and universi-
ties are special types of schools. That’s what they have most in common.

Figure 13-3 describes a better relationship. The newly defined class School
contains the common properties of both types of schools, including the rela-
tionship they both have with Student objects. School even contains the
common Enroll() method, although it’s abstract because HighSchool and
University usually don’t implement Enroll() the same way.

The classes HighSchool and University now inherit from a common base
class. Each contains its unique members: NameFavorite() in the case of
HighSchool, and GetGrant() for the University. In addition, both classes
override the Enroll() method with a version that describes how that type
of school enrolls students. In effect, I’ve extracted a superclass, or base class,
from two similar classes, which now become subclasses.

University

+ nAvgSAT

+ Enroll ()
+ GetGrant ()

High School

+ Enroll ()
+ NameFavorite ()

School
{abstract}

– numStudents Student

+ Enroll ()
– {abstract}

*

Figure 13-3:
Both High
School

and Uni-
versity
should be

based on a
common
School

class.

291Chapter 13: Poly-what-ism?

20_597043 ch13.qxd 9/20/05 2:14 PM Page 291

The introduction of the School class has at least two big advantages:

� It corresponds with reality. A University is a School, but it is not a
HighSchool. Matching reality is nice but not conclusive.

� It isolates one class from changes or additions to the other. When my
boss comes along later, as will undoubtedly happen, and asks that I
introduce the commencement exercise to the university, I can add the
CommencementSpeech() method to the University class without
impacting HighSchool.

This process of culling out common properties from similar classes is called
factoring. This is an important feature of object-oriented languages for the
reasons described so far, plus one more: reduction in redundancy. Let me
repeat, redundancy is bad; there is no place for redundancy. Said another
way . . .

Factoring is legitimate only if the inheritance relationship corresponds to
reality. Factoring together a class Mouse and Joystick because they’re
both hardware pointing devices is legitimate. Factoring together a class
Mouse and Display because they both make low-level operating system
calls is not.

Factoring can and usually does result in multiple levels of abstraction. For
example, a program written for a more developed school hierarchy may have
a class structure more like that shown in Figure 13-4.

You can see that I have inserted a pair of new classes between University
and School: HigherLearning and LowerLevel. For example, I’ve subdivided
the new class HigherLearning into College and University. This type of
multitiered class hierarchy is common and desirable when factoring out rela-
tionships. They correspond to reality, and they can teach you sometimes
subtle features of your solution.

HigherLearning

College

Jr. College

University

LowerLevel

School

Grammar School High School

Figure 13-4:
Class factor-
ing can and

usually does
result in the

addition of
layers of

inheritance
hierarchy.

292 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 292

Note, however, that no Unified Factoring Theory exists for any given set of
classes. The relationship in Figure 13-4 seems natural, but suppose that an
application cared more about differentiating types of schools that are admin-
istered by local politicians from those that aren’t. This relationship, shown in
Figure 13-5, is a more natural fit for that type of problem.

I’m left with nothing but a concept —
the abstract class
As intellectually satisfying as factoring is, it introduces a problem of its own.
Return one more time to BankAccount, which was introduced at the begin-
ning of the chapter. Think for a minute about how you may go about defining
the different member functions defined in BankAccount.

Most BankAccount member functions are no problem because both account
types implement them in the same way. You should implement those common
functions in BankAccount. Withdraw() is different, however. The rules for
withdrawing from a savings account differ from those for withdrawing from a
checking account. You’ll have to implement SavingsAccount.Withdraw()
differently from CheckingAccount.Withdraw(). But how are you supposed
to implement BankAccount.Withdraw()?

Ask the bank manager for help. I imagine the conversation going something
like the following:

“What are the rules for making a withdrawal from an account?” you ask,
expectantly.

“What type of account? Savings or checking?” comes the reply.

“From an account,” you say. “Just an account.”

Remote

University

Local

School

Public Community

Grammar High School Community College Jr. College

Figure 13-5:
There’s no
“correct”
factoring.

The proper
way to

break down
the classes

is partially a
function of

the problem
being

solved.

293Chapter 13: Poly-what-ism?

20_597043 ch13.qxd 9/20/05 2:14 PM Page 293

Blank look. (One may say a “blank bank look.” . . . Then again, maybe not.)

The problem is that the question doesn’t make sense. There’s no such thing as
“just an account.” All accounts (in this example) are either checking accounts
or savings accounts. The concept of an account is an abstract one that factors
out properties that are common to the two concrete classes. It is incomplete,
because it lacks the critical property Withdraw(). (After you get further into
the details, you may find other properties that a simple account lacks.)

The concept of a BankAccount is abstract.

How do you use an abstract class?
Abstract classes are used to describe abstract concepts.

An abstract class is a class with one or more abstract methods. Oh, great!
That helps a lot. Okay, an abstract method is a method marked abstract.
We’re really moving now. Let me try again: An abstract method has no imple-
mentation — now you’re really confused.

Consider the following stripped-down demonstration program:

// AbstractInheritance - the BankAccount class is actually abstract because
// there is no single implementation for Withdraw
namespace AbstractInheritance
{
using System;
// AbstractBaseClass - create an abstract base class with nothing
// but an Output() method
abstract public class AbstractBaseClass
{
// Output - abstract method that outputs a string
// but only in subclasses that override it
abstract public void Output(string sOutputString);

}
// SubClass1 - one concrete implementation of AbstractBaseClass
public class SubClass1 : AbstractBaseClass
{
override public void Output(string sSource)
{
string s = sSource.ToUpper();
Console.WriteLine(“Call to SubClass1.Output() from within {0}”, s);

}
}
// SubClass2 - another concrete implementation of AbstractBaseClass
public class SubClass2 : AbstractBaseClass

294 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 294

{
override public void Output(string sSource)
{
string s = sSource.ToLower();
Console.WriteLine(“Call to SubClass2.Output() from within {0}”, s);

}
}
class Program
{
public static void Test(AbstractBaseClass ba)
{
ba.Output(“Test”);

}
public static void Main(string[] strings)
{

// you can’t create an AbstractBaseClass object because it’s
// abstract - duh. C# generates a compile time error if you
// uncomment the following line
// AbstractBaseClass ba = new AbstractBaseClass();
// now repeat the experiment with Subclass1
Console.WriteLine(“Creating a SubClass1 object”);
SubClass1 sc1 = new SubClass1();
Test(sc1);
// and finally a Subclass2 object
Console.WriteLine(“\nCreating a SubClass2 object”);
SubClass2 sc2 = new SubClass2();
Test(sc2);
// wait for user to acknowledge
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

The program first defines the class AbstractBaseClass with a single abstract
Output() method. Because it is declared abstract, Output() has no imple-
mentation, that is, no method body.

Two classes inherit from AbstractBaseClass: SubClass1 and SubClass2.
Both are concrete classes because they override the Output() method with
“real” methods and themselves contain no abstract methods.

A class can be declared abstract whether it has abstract members or not;
however, a class can be concrete only when all of the abstract methods in
any base class above it have been hidden (overridden) with real methods.

The two subclass Output() methods differ in a trivial way. Both accept an
input string, which they regurgitate to the user. However, one converts the
string to all caps before output and the other to all lowercase characters.

295Chapter 13: Poly-what-ism?

20_597043 ch13.qxd 9/20/05 2:14 PM Page 295

The following output from this program demonstrates the polymorphic
nature of AbstractBaseClass:

Creating a SubClass1 object
Call to SubClass1.Output() from within TEST

Creating a SubClass2 object
Call to SubClass2.Output() from within test
Press Enter to terminate...

An abstract method is automatically virtual, so you don’t add the virtual
keyword to an abstract method.

Creating an abstract object — not!
Notice something about the AbstractInheritance program: It is not legal
to create an AbstractBaseClass object, but the argument to Test() is
declared to be an object of the class AbstractBaseClass or one of its sub-
classes. It’s the subclasses clause that’s critical here. The SubClass1 and
SubClass2 objects can be passed because they are both concrete subclasses
of AbstractBaseClass. The IS_A relationship applies. This is actually a pow-
erful technique, allowing you to write highly general methods.

Restarting a Class Hierarchy
The virtual keyword can also be used to start a new inheritance hierarchy.
Consider the class hierarchy demonstrated in the following InheritanceTest
program:

// InheritanceTest - examine the way that the virtual keyword can
// be used to start a new inheritance ladder
namespace InheritanceTest
{
using System;
public class Program
{
public static void Main(string[] strings)
{
Console.WriteLine(“\nPassing a BankAccount”);
BankAccount ba = new BankAccount();
Test1(ba);

296 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 296

Console.WriteLine(“\nPassing a SavingsAccount”);
SavingsAccount sa = new SavingsAccount();
Test1(sa);
Test2(sa);

Console.WriteLine(“\nPassing a SpecialSaleAccount”);
SpecialSaleAccount ssa = new SpecialSaleAccount();
Test1(ssa);
Test2(ssa);
Test3(ssa);

Console.WriteLine(“\nPassing a SaleSpecialCustomer”);
SaleSpecialCustomer ssc = new SaleSpecialCustomer();
Test1(ssc);
Test2(ssc);
Test3(ssc);
Test4(ssc);

// wait for user to acknowledge
Console.WriteLine();
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}

public static void Test1(BankAccount account)
{
Console.WriteLine(“\tto Test(BankAccount)”);
account.Withdraw(100);

}

public static void Test2(SavingsAccount account)
{
Console.WriteLine(“\tto Test(SavingsAccount)”);
account.Withdraw(100);

}

public static void Test3(SpecialSaleAccount account)
{
Console.WriteLine(“\tto Test(SpecialSaleAccount)”);
account.Withdraw(100);

}

public static void Test4(SaleSpecialCustomer account)
{
Console.WriteLine(“\tto Test(SaleSpecialCustomer)”);
account.Withdraw(100);

}
}

297Chapter 13: Poly-what-ism?

20_597043 ch13.qxd 9/20/05 2:14 PM Page 297

// BankAccount - simulate a bank account each of which
// carries an account id (which is assigned
// upon creation) and a balance
public class BankAccount
{
// Withdrawal - you can withdraw any amount up to the
// balance; return the amount withdrawn
virtual public void Withdraw(decimal mWithdraw)
{
Console.WriteLine(“\t\tcalls BankAccount.Withdraw()”);

}
}
// SavingsAccount - a bank account that draws interest
public class SavingsAccount : BankAccount
{
override public void Withdraw(decimal mWithdrawal)
{
Console.WriteLine(“\t\tcalls SavingsAccount.Withdraw()”);

}
}

// SpecialSaleAccount - account used only during a sale
public class SpecialSaleAccount : SavingsAccount
{
new virtual public void Withdraw(decimal mWithdrawal)
{
Console.WriteLine(“\t\tcalls SpecialSaleAccount.Withdraw()”);

}
}

// SaleSpecialCustomer - account used for special customers
// during the sale period
public class SaleSpecialCustomer : SpecialSaleAccount
{
override public void Withdraw(decimal mWithdrawal)
{
Console.WriteLine(“\t\tcalls SaleSpecialCustomer.Withdraw()”);

}
}

}

Each of these classes extends the class above it. Notice, however, that
SpecialSaleAccount.Withdraw() has been flagged as virtual, effectively
breaking the inheritance ladder at that point. When viewed from the perspec-
tive of BankAccount, the SpecialSaleAccount and SaleSpecialCustomer
classes look exactly like a SavingsAccount. It is only when viewed from the
perspective of a SpecialSaleAccount that the new versions of Withdraw()
become available.

This is demonstrated with a small program. The function Main() invokes
a series of Test() methods, each designed to accept a different subclass.
Each of these versions of Test() calls Withdraw() from the perspective
of a different class of object.

298 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 298

The output from this program is as follows:

Passing a BankAccount
to Test(BankAccount)

calls BankAccount.Withdraw()
Passing a SavingsAccount

to Test(BankAccount)
calls SavingsAccount.Withdraw()

to Test(SavingsAccount)
calls SavingsAccount.Withdraw()

Passing a SpecialSaleAccount
to Test(BankAccount)

calls SavingsAccount.Withdraw()
to Test(SavingsAccount)

calls SavingsAccount.Withdraw()
to Test(SpecialSaleAccount)

calls SpecialSaleAccount.Withdraw()
Passing a SaleSpecialCustomer

to Test(BankAccount)
calls SavingsAccount.Withdraw()

to Test(SavingsAccount)
calls SavingsAccount.Withdraw()

to Test(SpecialSaleAccount)
calls SaleSpecialCustomer.Withdraw()

to Test(SaleSpecialCustomer)
calls SaleSpecialCustomer.Withdraw()

Press Enter to terminate....

I have bolded the calls of special interest. The BankAccount and Savings
Account classes operate exactly as you would expect. However, when calling
Test(SavingsAccount), both the SpecialSalesAccount and SaleSpecial
Customer pass themselves off as a SavingsAccount. It’s only when looking
at the next lower level that the new SaleSpecialCustomer hierarchy can be
used in lieu of a SpecialSaleAccount.

299Chapter 13: Poly-what-ism?

Creating a new hierarchy
Why does C# support creating a new inheri-
tance hierarchy? Isn’t polymorphism complicated
enough already?

C# was created to be a “netable” language in the
sense that classes which a program executes —
even subclasses — may be distributed across
the Internet. That is, a program you’re writing can
directly use classes from standard repositories
located on other computers via the Internet.

You can extend a class that you load over the
Internet. Overriding the methods of a standard,
tested hierarchy of classes may have unintended
effects. Establishing a new hierarchy of classes
enables your program to enjoy the benefits of
polymorphism without any danger of breaking
the existing code.

20_597043 ch13.qxd 9/20/05 2:14 PM Page 299

Sealing a Class
You may decide that you don’t want future generations of programmers to be
able to extend a particular class. You can lock the class using the keyword
sealed. A sealed class cannot be used as the base class for any other class.

Consider the following code snippet:

using System;
public class BankAccount
{
// Withdrawal - you can withdraw any amount up to the
// balance; return the amount withdrawn
virtual public void Withdraw(decimal mWithdraw)
{
Console.WriteLine(“invokes BankAccount.Withdraw()”);

}
}
public sealed class SavingsAccount : BankAccount
{
override public void Withdraw(decimal mWithdrawal)
{
Console.WriteLine(“invokes SavingsAccount.Withdraw()”);

}
}
public class SpecialSaleAccount : SavingsAccount
{
override public void Withdraw(decimal mWithdrawal)
{
Console.WriteLine(“invokes SpecialSaleAccount.Withdraw()”);

}
}

This snippet generates the following compiler error:

‘SpecialSaleAccount’ : cannot inherit from sealed class ‘SavingsAccount’

The sealed keyword enables you to protect your class from the prying meth-
ods of some subclass. For example, allowing programmers to extend a class
that implements system security would enable someone to create a security
back door.

Sealing a class prevents another program, possibly somewhere on the Internet,
from using a modified version of your class. The remote program can use the
class as is, or not, but it can’t inherit bits and pieces of your class while over-
riding the rest.

300 Part IV: Object-Oriented Programming

20_597043 ch13.qxd 9/20/05 2:14 PM Page 300

Part V
Beyond Basic

Classes

21_597043 pt05.qxd 9/20/05 2:15 PM Page 301

In this part . . .

So far, your objects have been simple things, like inte-
gers and strings and BankAccounts. But C# comes

equipped right out of the box with several other kinds of
objects. In this part, you find out how to write your own
value-type objects (which are akin to ints and floats)
with structs, and then you discover the great door into
eternal happiness: interfaces. Okay, that’s a bit over the
top, I admit. But interfaces are a powerful tool for making
your objects more general and flexible, and along with the
abstract classes you met in Chapter 13, interfaces are the
key to advanced program designs. So pay attention, please!

But interfaces aren’t the only way to make code highly
general and flexible. The brand-new generics features in
C# 2.0 let you write generic objects: mainly containers of
other data with fill-in-the-blanks slots where you can spec-
ify exactly what data type the container is to hold. Don’t
worry. It may seem impossibly abstract now — and maybe
more than a little weird — but by the end of Part V, you’ll
have nearly all the tools of C# at your disposal. And you
still have all the cool stuff in the Bonus Chapters on the
CD to go! (I include a couple of chapters that were in the
book in the first edition. We had to make room for gener-
ics somehow.)

21_597043 pt05.qxd 9/20/05 2:15 PM Page 302

Chapter 14

When a Class Isn’t a Class — The
Interface and the Structure

In This Chapter
� Investigating the CAN_BE_USED_AS relationship

� Defining an interface

� Using the interface to perform common operations

� Defining a structure

� Using the structure to unify classes, interfaces, and intrinsic value types into one class
hierarchy

A class can contain a reference to another class. This is the simple HAS_A
relationship. One class can extend another class through the marvel

of inheritance. That’s the IS_A relationship. The C# interface implements
another, equally important association: the CAN_BE_USED_AS relationship.

What Is CAN_BE_USED_AS?
If you want to jot down a note, you may scribble it on a piece of paper with
a pen, stroke it into your personal digital assistant (PDA), or type it on your
laptop. Thus, you can say that all three objects — the pen, the PDA, and the
laptop — implement the TakeANote operation. Using the magic of inheri-
tance, you could implement this in C# as follows:

abstract class ThingsThatRecord
{
abstract public void TakeANote(string sNote);

}
public class Pen : ThingsThatRecord
{

22_597043 ch14.qxd 9/20/05 2:17 PM Page 303

override public void TakeANote(string sNote)
{
// . . . scribble a note with a pen . . .

}
}
public class PDA : ThingsThatRecord
{
override public void TakeANote(string sNote)
{
// . . . stroke a note on the PDA . . .

}
}
public class Laptop : ThingsThatRecord
{
override public void TakeANote(string sNote)
{
// . . . whatever . . .

}
}

If the term abstract has you stumped, drop back one pace to Chapter 13. If
this whole concept of inheritance is a mystery, check out Chapter 12.

This inheritance solution seems to work fine as far as the TakeANote() oper-
ation is concerned. A function such as RecordTask(), shown as follows, can
use the TakeANote() method to write a shopping list without regard for the
type of device supplied:

void RecordTask(ThingsThatRecord things)
{
// this abstract method is implemented in all classes
// that inherit ThingsThatRecord
things.TakeANote(“Shopping list”);
// . . . and so on . . .

}

However, this solution suffers from two big problems:

� The first problem is fundamental: You can’t really claim that the pen,
the PDA, and the laptop have any type of IS_A relationship. Knowing
how a pen works and how it takes notes gives me no information as to
what a laptop is or how it records information. The name ThingsThat
Record is more of a description than a base class.

� The second problem is purely technical: You may better describe Lap
top as some subclass of Computer. Although you could reasonably
extend PDA from the same Computer base class, the same cannot be said
of Pen. You would have to characterize a pen as some type of Mechanical
WritingDevice or DeviceThatStainsYourShirt. However, a C# class
cannot inherit from two different classes at the same time — a C# class
can be only one type of thing.

304 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 304

Returning to the initial three classes, the only thing that the classes Pen, PDA,
and Laptop have in common for this purpose is that they can all be used to
record something. The CAN_BE_USED_AS Recordable relationship enables
you to communicate their serviceability for a particular purpose without
implying any inherent relationship among the three classes.

What Is an Interface?
An interface description looks much like a dataless class in which all the
methods are abstract. The interface description for “things that record”
could look like the following:

interface IRecordable
{
void TakeANote(string sNote);

}

Notice the keyword interface, where class would have gone. Within the
braces of an interface appears a list of abstract methods. Interfaces do not
contain definitions for any data members.

The method TakeANote() is written without an implementation. The key-
words public and virtual or abstract are not necessary. All methods in
an interface are public, and an interface is not involved in normal inheritance.
It’s an interface, not a class.

Classes that implement an interface must provide specific implementations
for each item in the interface. Must. The method that implements the inter-
face method does not use the override keyword. This isn’t like overriding
a virtual function.

By convention, begin the names of interfaces with the letter I. In addition, use
adjectives for the names of interfaces (class names are usually nouns). As
always, these are only suggestions, and I bear no legal responsibility nor are
these suggestions suitable for any particular. . . . In other words, C# doesn’t
care.

The following declaration indicates that the class PDA implements the
IRecordable interface:

public class PDA : IRecordable
{
public void TakeANote(string sNote)
{
// . . . do something to record the note . . .

}
}

305Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 305

There’s no difference in the syntax of a declaration that inherits a base class
ThingsThatRecord and a declaration that implements an interface
IRecordable.

This is the main reason for the naming convention used for interface names:
so you can tell an interface from a class.

The bottom line is that an interface describes a capability, like Swim Safety
Training or Class A Driver’s License. As a class, I earn my IRecordable
badge when I implement the TakeANote ability.

More than that, an interface is a contract. If you agree to implement every
method defined in the interface, you get to claim its capability.

Can I Get a Short Example?
A class implements an interface by providing a definition for every method of
the interface, as shown in the following code:

public class Pen : IRecordable
{
public void TakeANote(string sNote)
{
// . . . record the note with a pen . . .

}
}
public class PDA : ElectronicDevice, IRecordable
{
public void TakeANote(string sNote)
{
// . . . graffiti write the note . . .

}
}
public class Laptop : Computer, IRecordable
{
public void TakeANote(string sNote)
{
// . . . type in the note . . .

}
}

Each of these three classes inherits a different base class but implements the
same IRecordable interface. The IRecordable interface indicates that each
of the three classes can be used to jot down a note using the TakeANote()
method. To see how this may be useful, consider the following
RecordShoppingList() function:

306 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 306

public class Program
{
static public void RecordShoppingList(IRecordable recordingObject)
{
// create a shopping list
string sList = GenerateShoppingList();
// now jot it down
recordingObject.TakeANote(sList);

}
public static void Main(string[] args)
{
PDA pda = new PDA();
RecordShoppingList(pda);

}
}

In effect, this code snippet says that the function RecordShoppingList()
will accept as its argument any object that implements the TakeANote()
method — in human terms, “any object that can record a note.” Record
ShoppingList() makes no assumptions about the exact type of recording
Object. The fact that the object is actually a PDA or that it is a type of
ElectronicDevice is not important, as long as it can take a note.

That’s immensely powerful, because it lets RecordShoppingList() be
highly general and thus probably reusable in other programs. It’s even more
general than using a base class for the argument type, because the interface
argument allows you to pass almost arbitrary objects that don’t necessarily
have anything in common other than implementing the interface. They don’t
even have to come from the same class hierarchy.

Can I See a Program That CAN_BE_
USED_AS an Example?

The following SortInterface program is a special offer. These capabilities
brought to you by two different interfaces cannot be matched in any inheri-
tance relationship, anywhere. Interface implementations are standing by.

However, I want to break the SortInterface program into sections to
demonstrate various principles — pfft! As if I had principles. I just want to
make sure that you can see exactly how the program works.

307Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 307

Creating your own interface
at home in your spare time
The following IDisplayable interface is satisfied by any class that contains
a GetString() method (and declares that it implements IDisplayable, of
course). GetString() returns a string representation of the object that can
be displayed using WriteLine():

// IDisplayable - an object that implements the GetString() method
interface IDisplayable
{
// return description of yourself
string GetString();

}

The following Student class implements IDisplayable:

class Student : IDisplayable
{
private string sName;
private double dGrade = 0.0;
// access read-only methods
public string Name
{
get { return sName; }

}
public double Grade
{
get { return dGrade; }

}
// GetString - return a representation of the student
public string GetString() // implements the interface
{
string sPadName = Name.PadRight(9);
string s = String.Format(“{0}: {1:N0}”, sPadName, Grade);
return s;

}
}

The call to PadRight() makes sure that the field where the name goes will be
at least nine characters wide. Any extra space following the name is padded
with spaces. Padding a string to a standard length makes rows of objects line
up nicely, as discussed more fully in Chapter 9. The {1:N0} says, “Display the
grade with commas (or dots, depending on what country you’re in) every
three digits.” The 0 part means round off any fractional part.

Given this declaration, you can now write the following program fragment
(the entire program appears in the section “Putting it all together,” later in
this chapter):

308 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 308

// DisplayArray - display an array of objects that
// implement the IDisplayable interface
public static void DisplayArray(IDisplayable[] displayables)
{
int length = displayables.Length;
for(int index = 0; index < length; index++)
{
IDisplayable displayable = displayables[index];
Console.WriteLine(“{0}”, displayable.GetString());

}
}

This DisplayArray() method can display any type of array, as long as the
members of the array define a GetString() method. The following is an
example of the output from DisplayArray():

Homer : 0
Marge : 85
Bart : 50
Lisa : 100
Maggie : 30

Predefined interfaces
Likewise, you’ll find more interfaces built into the standard C# library than
gun racks at an NRA convention. For example, C# defines the IComparable
interface as follows:

interface IComparable
{
// compare the current object to the object ‘o’; return a
// 1 if larger, -1 if smaller, and 0 otherwise
int CompareTo(object o);

}

A class implements the IComparable interface by implementing a Compare
To() method. For example, String implements this method by comparing
two strings. If the strings are identical, it returns a 0. If they are not, it
returns either a 1 or a –1, depending on which one is “greater.”

It seems a little Darwinian, but you could say that one Student object is
“greater than” another Student object if his grade point average is higher. He’s
either a better student or a better apple polisher — it doesn’t really matter.

Implementing the CompareTo() method implies that the objects have a sort-
ing order. If one student is “greater than” another, you must be able to sort

309Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 309

the students from “least” to “greatest.” In fact, the Array class implements
the following method already:

Array.Sort(IComparable[] objects);

This method sorts an array of objects that implements the IComparable
interface. It doesn’t even matter which class the objects belong to. For exam-
ple, they could even be Student objects. The Array class could even sort
the following version of Student:

// Student - description of a student with name and grade
class Student : IComparable
{
private double dGrade;
// access read-only methods
public double Grade
{
get { return dGrade; }

}
// CompareTo - compare one student to another; one student is
// “greater” than another if his grades are better
public int CompareTo(object rightObject)
{
Student leftStudent = this;
Student rightStudent = (Student)rightObject;
// now generate a -1, 0, or 1 based upon the
// sort criterion (the student’s grade)
if (rightStudent.Grade < leftStudent.Grade)
{
return -1;

}
if (rightStudent.Grade > leftStudent.Grade)
{
return 1;

}
return 0;

}
}

Sorting an array of Students is reduced to a single call, as follows:

void MyFunction(Student[] students)
{
// sort the array of IComparable objects
Array.Sort(students);

}

You provide the comparator, and Array does all the work.

310 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 310

Putting it all together
This is the moment you’ve been waiting for: the complete SortInterface
program that uses the features that I described earlier in this chapter:

// SortInterface - the SortInterface program demonstrates how
// the interface concept can be used to provide
// an enhanced degree of flexibility in factoring
// and implementing classes
using System;
namespace SortInterface
{
// IDisplayable - an object that can convert itself into
// a displayable string format
interface IDisplayable
{
// GetString - return a string representation of yourself
string GetString();

}
class Program
{
public static void Main(string[] args)
{
// Sort students by grade...
Console.WriteLine(“Sorting the list of students”);
// get an unsorted array of students
Student[] students = Student.CreateStudentList();
// use the IComparable interface to sort the array
IComparable[] comparableObjects = (IComparable[])students;
Array.Sort(comparableObjects);
// now the IDisplayable interface to display the results
IDisplayable[] displayableObjects = (IDisplayable[])students;
DisplayArray(displayableObjects);
// Now sort an array of birds by name using
// the same routines even though the classes Bird and
// Student have no common base class
Console.WriteLine(“\nSorting the list of birds”);
Bird[] birds = Bird.CreateBirdList();
// notice that it’s not really necessary to cast the
// objects explicitly...
Array.Sort(birds);
DisplayArray(birds);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// DisplayArray - display an array of objects that
// implement the IDisplayable interface
public static void DisplayArray(IDisplayable[] displayables)
{

311Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 311

int length = displayables.Length;
for(int index = 0; index < length; index++)
{
IDisplayable displayable = displayables[index];
Console.WriteLine(“{0}”, displayable.GetString());

}
}

}
// ----------- Students - sort students by grade -------
// Student - description of a student with name and grade
class Student : IComparable, IDisplayable
{
private string sName;
private double dGrade = 0.0;
// Constructor - initialize a new student object
public Student(string sName, double dGrade)
{
this.sName = sName;
this.dGrade = dGrade;

}
// CreateStudentList - to save space here, just create
// a fixed list of students
static string[] sNames =

{“Homer”, “Marge”, “Bart”, “Lisa”, “Maggie”};
static double[] dGrades = {0, 85, 50, 100, 30};
public static Student[] CreateStudentList()
{
Student[] sArray = new Student[sNames.Length];
for (int i = 0; i < sNames.Length; i++)
{
sArray[i] = new Student(sNames[i], dGrades[i]);

}
return sArray;

}
// access read-only methods
public string Name
{
get { return sName; }

}
public double Grade
{
get { return dGrade; }

}
// implement the IComparable interface:
// CompareTo - compare another object (in this case, Student
// objects) and decide which one comes after the
// other in the sorted array
public int CompareTo(object rightObject)
{
// compare the current Student (let’s call her
// ‘left’) against the other student (we’ll call
// her ‘right’) - generate an error if both
// left and right are not Student objects

312 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 312

Student leftStudent = this;
if (!(rightObject is Student))
{
Console.WriteLine(“Compare method passed a nonStudent”);
return 0;

}
Student rightStudent = (Student)rightObject;
// now generate a -1, 0, or 1 based upon the
// sort criteria (the student’s grade)
// (the Double class has a CompareTo() method
// we could have used instead)
if (rightStudent.Grade < leftStudent.Grade)
{
return -1;

}
if (rightStudent.Grade > leftStudent.Grade)
{
return 1;

}
return 0;

}
// implement the IDisplayable interface:
// GetString - return a representation of the student
public string GetString()
{
string sPadName = Name.PadRight(9);
string s = String.Format(“{0}: {1:N0}”, sPadName, Grade);
return s;

}
}
// -----------Birds - sort birds by their names--------
// Bird - just an array of bird names
class Bird : IComparable, IDisplayable
{
private string sName;
// Constructor - initialize a new Bird object
public Bird(string sName)
{
this.sName = sName;

}
// CreateBirdList - return a list of birds to the caller;
// use a canned list here to save time
static string[] sBirdNames =

{ “Oriole”, “Hawk”, “Robin”, “Cardinal”,
“Blue jay”, “Finch”, “Sparrow”};

public static Bird[] CreateBirdList()
{
Bird[] birds = new Bird[sBirdNames.Length];
for(int i = 0; i < birds.Length; i++)
{
birds[i] = new Bird(sBirdNames[i]);

}
return birds;

313Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 313

}
// access read-only methods
public string Name
{
get { return sName; }

}
// implement the IComparable interface:
// CompareTo - compare the birds by name; use the
// built-in String class compare method
public int CompareTo(object rightObject)
{
// we’ll compare the “current” bird to the
// “right-hand object” bird
Bird leftBird = this;
Bird rightBird = (Bird)rightObject;
return String.Compare(leftBird.Name, rightBird.Name);

}
// implement the IDisplayable interface:
// GetString - returns the name of the bird
public string GetString()
{
return Name;

}
}

}

The Student class (it’s about in the middle of the program listing) imple-
ments the IComparable and IDisplayable interfaces, as described earlier.
The CompareTo() method compares the students by grade, which results in
the students being sorted by grade. The GetString() method returns the
name and grade of the student.

The other methods of Student include the read-only Name and Grade proper-
ties, a simple constructor, and a CreateStudentList() method. This list
method just returns a fixed list of students.

The Bird class at the bottom of the listing also implements the IComparable
and IDisplayable interfaces. It implements CompareTo() by comparing the
names of the birds using a method similar to the one built into the String
class. So, one bird is greater than another if its name is greater. This method
results in the birds being sorted in alphabetical order. The GetName()
method just returns the name of the bird.

Now you’re set up for the good part back in Main(). The CreateStudent
List() method is used to return an unsorted list, which is stored in the
array students.

Name collections of objects, such as an array, using a plural noun.

This array of students is first cast into an array of comparableObjects. This
differs from the arrays used in other chapters (most notably the arrays in

314 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 314

Chapter 6). Those are arrays of objects of a particular class, like an array
of Student objects, while comparableObjects is an array of objects that
implement the IComparable interface, irrespective of what class they may
be. Using an interface as an array element type, a method parameter type,
or a method return type is a powerful technique for program flexibility.

The comparableObjects array is passed to the built-in Array.Sort()
method, which sorts them by grade.

The sorted array of Student objects is then passed to the locally defined
DisplayArray() method. DisplayArray() iterates through an array of
objects that implement GetString(). It uses the Array.Length property
to know how many objects are in the array. It then calls GetString() on
each object and displays the result to the console using WriteLine().

The program back in Main() continues by sorting and displaying birds! I
think we can agree that birds have nothing to do with students. However, the
class Bird implements the IComparable interface by comparing the names
of the birds and the IDisplayable interface by returning the name of the
bird.

Notice that Main() does not recast the array of birds this time. There’s no
need. This is similar to the following:

class BaseClass {}
class SubClass : BaseClass {}
class Program
{
public static void SomeFunction(BaseClass bc) {}
public static void AnotherFunction()
{
SubClass sc = new SubClass();
SomeFunction(sc);

}
}

Here, an object of class SubClass can be passed in lieu of a BaseClass
object because a SubClass IS_A BaseClass.

Similarly, an array of Bird objects can be passed to a method expecting an
array of IComparable objects because Bird implements that interface. The
very next call to DisplayArray() passes the birds array, again without a
cast because Bird implements the IDisplayable interface.

The output from the program appears as follows:

Sorting the list of students
Lisa : 100
Marge : 85
Bart : 50

315Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 315

Maggie : 30
Homer : 0

Sorting the list of birds
Blue jay
Cardinal
Finch
Hawk
Oriole
Robin
Sparrow
Press Enter to terminate...

The students and birds are sorted, each according to its kind.

Inheriting an Interface
An interface can “inherit” the methods of another interface. I use quotes
around the word inherit because it’s not true inheritance, no matter how it
may appear. The following interface code lists a base interface, much like a
base class, in its heading:

// ICompare - an interface that can both compare itself
// and display its own value
public interface ICompare : IComparable
{
// GetValue - returns the value of itself as an int
int GetValue();

}

The ICompare interface inherits the requirement to implement the Compare
To() method from IComparable. To that, it adds the requirement to imple-
ment GetValue(). An ICompare object can be used as an IComparable
object because, by definition, the former implements the requirements of the
latter. However, this is not complete inheritance in the object-oriented, C#
meaning of the word. Polymorphism is not possible. In addition, constructor
relationships don’t apply.

I demonstrate interface inheritance in the AbstractInterface program in
the following section.

Facing an Abstract Interface
A class must implement every method of an interface to implement the
interface. However, a class may implement a method of an interface with
an abstract method (such a class is abstract, of course), as follows:

316 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 316

// AbstractInterface - demonstrate that an interface can be

// implemented with an abstract class
using System;
namespace AbstractInterface
{
// ICompare - an interface that can both compare itself
// and display its own value
public interface ICompare : IComparable
{
// GetValue - returns the value of itself as an int
int GetValue();

}
// BaseClass - implement the ICompare interface by
// providing a concrete GetValue() method and
// an abstract CompareTo()
abstract public class BaseClass : ICompare
{
int nValue;
public BaseClass(int nInitialValue)
{
nValue = nInitialValue;

}
// implement the ICompare interface:
// first with a concrete method
public int GetValue()
{
return nValue;

}
// complete the ICompare interface with an abstract method
abstract public int CompareTo(object rightObject);

}
// SubClass - complete the base class by overriding the
// abstract CompareTo() method
public class SubClass: BaseClass
{
// pass the value passed to the constructor up to the
// base class constructor
public SubClass(int nInitialValue) : base(nInitialValue)
{
}
// CompareTo - implement the IComparable interface; return
// an indication of whether a subclass object is
// greater than another
override public int CompareTo(object rightObject)
{
BaseClass bc = (BaseClass)rightObject;
// this compares two ints, one returned by the first
// GetValue() and one returned by the other GetValue()
return GetValue().CompareTo(bc.GetValue());

}
}
public class Program

317Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 317

{
public static void Main(string[] strings)
{
SubClass sc1 = new SubClass(10);
SubClass sc2 = new SubClass(20);
MyFunc(sc1, sc2);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// MyFunc - use the methods provided by the ICompare interface
// to display the value of two objects and then an indication
// of which is greater (according to the object itself)
public static void MyFunc(ICompare ic1, ICompare ic2)
{
Console.WriteLine(“The value of ic1 is {0} and ic2 is {1}”,

ic1.GetValue(), ic2.GetValue());
string s;
switch (ic1.CompareTo(ic2))
{
case 0:
s = “is equal to”;
break;

case -1:
s = “is less than”;
break;

case 1:
s = “is greater than”;
break;

default:
s = “something messed up”;
break;

}
Console.WriteLine(

“The objects themselves think that ic1 {0} ic2”, s);
}

}
}

AbstractInterface is another one of those large but relatively simple
programs.

The ICompare interface describes a class that can compare two objects and
fetch their value. ICompare inherits the CompareTo() requirement from the
IComparable interface. To that, ICompare adds GetValue(), which returns
the value of the objects as an int.

318 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 318

Even though it may return the value of the object as an int, GetValue()
says nothing about the internals of the class. Generating an int value may
involve a complex calculation, for all I know.

The class BaseClass implements the ICompare interface — the concrete
GetValue() method returns the data member nValue. However, the
CompareTo() method, which is also required by the ICompare interface, is
declared abstract.

Declaring a class abstract means that it is an incomplete concept lacking
an implementation of one or more properties — in this case, the method
CompareTo(). The implementation is thus postponed for subclasses to
complete.

SubClass provides the CompareTo() method that is necessary to become
concrete.

Notice that SubClass automatically implements the ICompare interface,
even though it doesn’t explicitly say so. BaseClass promised to implement
the methods of ICompare, and SubClass IS_A BaseClass. By inheriting
these methods, SubClass automatically inherits the requirement to imple-
ment ICompare.

Main() creates two objects of class SubClass with different values. It then
passes those objects to MyFunc(). The MyFunc() method expects to receive
two objects of interface ICompare. MyFunc() uses the CompareTo() method
to decide which object is greater and then uses GetValue() to display the
“value” of the two objects.

The output from this program is short and sweet:

The value of ic1 is 10 and ic2 is 20
The objects themselves think that ic1 is less than ic2
Press Enter to terminate...

Chapter 15 deepens the already remarkable capability of interfaces by show-
ing you how to write generic interfaces.

The C# Structure Has No Class
C# appears to have a dichotomy in the way you declare variables. You
declare and initialize value type variables such as int and double in the
following way:

int n; // declare
n = 1; // initialize

319Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 319

However, you declare and initialize references to objects in a completely dif-
ferent way:

public class MyClass
{
public int n;

}
MyClass mc; // declare
mc = new MyClass(); // initialize

The class variable mc is known as a reference type because the variable mc
refers to potentially distant memory. Intrinsic variables like int or double
are known as value type variables.

If you examine n and mc more closely, however, you see that the only real dif-
ference is that C# allocates the memory for the value type variable automati-
cally while you have to allocate the memory for the class object explicitly.
int is from Venus; MyClass is from Mars. Is there nothing that can tie the two
together into a Unified Class Theory?

The C# structure
C# defines a third variable type called a structure that bridges the gap
between the reference types and the value types. The syntax of a structure
declaration looks like that of a class:

public struct MyStruct
{
public int n;
public double d;

}
public class MyClass
{
public int n;
public double d;

}

A structure object is accessed like a class object but allocated like a value
type, as demonstrated in the following code:

// declaring and accessing a simple value type
int n;
n = 1;
// declaring a struct is much like declaring a simple int
MyStruct ms; // automatically allocates memory
ms.n = 3; // access the members the same as a class object
ms.d = 3.0;
// a class object must be allocated out of a separate
// memory area with new

320 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 320

MyClass mc = new MyClass;
mc.n = 2;
mc.d = 2.0;

A struct object is stored like an intrinsic variable in memory. The variable
ms is not a reference to some external memory block that’s allocated off a
separate memory area.

The ms object occupies the same local memory area that the variable n occu-
pies, as shown in Figure 14-1.

The distinction between reference and value types is even more obvious in
the following example. Allocating an array of 100 reference objects requires
the program to invoke new 101 times (once for the array and once for each
object):

MyClass[] mc = new MyClass[100];
for(int i = 0; i < ms.Length; i++)
{
mc[i] = new MyClass();

}
mc[0].n = 0;

| |
| 1 | n
| 3 | ms
| 3.0 |
| * | mc
| |

| |
| |
| 2 |
| 2.0 |

Figure 14-1:
The struct

variable
ms “lives”

within
the same
memory

space as
the value

type
variable n,

while the
mc object’s

memory
comes off of

a separate
heap of

memory
space.

321Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 321

This array also involves a considerable amount of overhead, both in space
and time, as detailed in the following list:

� Each element in the mc array must be large enough to contain a refer-
ence to an object.

� Each MyClass object has unseen overhead above and beyond the single
data member n.

� Consider the time the program takes to go through the motions of whit-
tling off a tiny chunk of memory 100 times.

The memory for the structure objects is allocated as part of the array, as
follows:

// declaring an array of simple int value types
int[] integers = new int[100]; // this allocates the memory
integers[0] = 0;
// declaring an array of structs is just as easy
MyStruct[] ms = new MyStruct[100]; // so does this
ms[0].n = 0;

This time just one long contiguous block of memory is allocated, all at once.

The structure constructor
Interestingly, a structure can be initialized using the following class-like
syntax:

public struct MyStruct
{
public int n;
public double d;

}
MyStruct ms = new MyStruct(); // with new

Despite appearances, this does not allocate a block of memory off of the
heap. It just initializes n and d to zero.

You can construct a nondefault constructor of your own that actually does
something. Consider the following code:

public struct Test
{
private int n;
public Test(int n)
{
this.n = n;

}
}

322 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 322

public class Program
{
public static void Main(string[] args)
{

Test test = new Test(10);
}

}

Despite its appearance, the declaration test = new Test(10); does not
allocate memory — it only initializes the value type memory that’s already
there. Note the parentheses, not square brackets as in an array.

The wily methods of a structure
This paragraph summarizes the principal facts about the structure, which the
next example program illustrates. A structure can have instance members,
including methods and properties. A structure can have static members.
The static members of a structure may have initializers, but the nonstatic
(instance) members may not. Normally, a structure object is passed to a
function by value, but it may be passed by reference if this is specifically indi-
cated in the function call with the ref keyword. A structure cannot inherit
a class (other than Object, as described in the section “‘Oh, the Value and
the Reference Can Be Friends . . .’ — Unifying the Type System,” later in this
chapter), and it cannot be inherited by some other class. A structure can
implement an interface.

See Chapter 8 for the lowdown on the difference between a static and an
instance member. See Chapter 7 for a review of pass by value and pass by
reference. Chapter 12 discusses inheritance.

All classes (and structs) inherit from Object whether they specifically say
so or not. You can override the methods of Object. In practical terms, the
only method you may want to override is ToString(). ToString() allows
the object to create a displayable representation of itself. If you don’t imple-
ment your own ToString(), the default, from class Object, returns the com-
plete class name, for example: MyNamespace.MyClass. That’s usually not
very useful.

Putting a struct through
its paces in an example
The following example program demonstrates the different features of a
structure:

323Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 323

// StructureExample - demonstrate the various properties

// of a struct object
using System;
using System.Collections;
namespace StructureExample
{
public interface IDisplayable
{
string ToString();

}
// a struct can implement an interface
public struct Test : IDisplayable
{
// a struct can have both instance and
// class (static) data members;
// static members may have initializers
private int n;
private static double d = 20.0;
// a constructor can be used to initialize
// the data members of a struct
public Test(int n)
{
this.n = n;

}
// a struct may have both instance and class
// (static) properties
public int N
{
get { return n;}
set { n = value; }

}
public static double D
{
get { return d; }
set { d = value; }

}
// a struct may have methods
public void ChangeMethod(int nNewValue, double dNewValue)
{
n = nNewValue;
d = dNewValue;

}
// ToString - overrides the ToString method in object
// and implements the IDisplayable interface
override public string ToString()
{
return string.Format(“({0:N}, {1:N})”, n, d);

}
}
public class Program
{
public static void Main(string[] args)

324 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 324

{
// create a Test object
Test test = new Test(10);
Console.WriteLine(“Initial value of test”);
OutputFunction(test);
// try to modify the test object by passing it
// as an argument
ChangeValueFunction(test, 100, 200.0);
Console.WriteLine(“Value of test after calling” +

“ ChangeValueFunction(100, 200.0)”);
OutputFunction(test);
// try to modify the test object by passing it
// as an argument
ChangeReferenceFunction(ref test, 100, 200.0);
Console.WriteLine(“Value of test after calling” +

“ ChangeReferenceFunction(100, 200.0)”);
OutputFunction(test);
// a method can modify the object
test.ChangeMethod(1000, 2000.0);
Console.WriteLine(“Value of test after calling” +

“ ChangeMethod(1000, 2000.0)”);
OutputFunction(test);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// ChangeValueFunction - pass the struct by value
public static void ChangeValueFunction(Test t,

int newValue, double dNewValue)
{
t.N = newValue;
Test.D = dNewValue;

}
// ChangeReferenceFunction - pass the struct by reference
public static void ChangeReferenceFunction(ref Test t,

int newValue, double dNewValue)
{
t.N = newValue;
Test.D = dNewValue;

}
// OutputFunction - outputs any method that implements ToString()
public static void OutputFunction(IDisplayable id)
{
Console.WriteLine(“id = {0}”, id.ToString());

}
}

}

The StructureExample program first defines an interface, IDisplayable,
and then a simple structure, Test, which implements that interface. Test
also defines two members: an instance member, n, and a static member, d.
A static initializer sets the member d to 20; however, an initializer for the
instance member n is not allowed.

325Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 325

The Test structure defines a constructor, an instance property N, and a static
property D.

Test defines a method of its own — ChangeMethod() — as well as overrides
the ToString() method. In providing ToString(), Test implements the
IDisplayable interface.

The Main() function puts Test through its paces. First, it creates an object
test out of local memory and uses the constructor to initialize that memory.
Main() then calls OutputFunction() to display the object.

Main() next calls the function ChangeValueFunction(), passing test along
with two numeric constants. ChangeValueFunction() assigns these two
numbers to the Test members n and d. Upon return from the function, the
OutputFunction() reveals that d has been changed while n has not.

The call to ChangeValueFunction() passes the struct object test by
value. The object t within that function is a copy of the original test and not
the object itself. Thus, the assignment to t.N changes the local copy but has
no effect on test back in Main(). However, all objects of class Test share
the same static member d. Thus, the assignment to Test.D changes d for all
objects, including test.

The next call is to the function ChangeReferenceFunction(). This function
appears the same as ChangeValueFunction() except for the addition of the
keyword ref to the argument list. test is now passed by reference, so the
argument t refers to the original object test and not some newly created
copy.

The final call in Main() is to the method ChangeMethod(). Calls to methods
always pass the current object by reference, so the changes made in this
method are retained back in Main().

The output from the program appears as follows:

Initial value of test
id = (10.00, 20.00)
Value of test after calling ChangeValueFunction(100, 200.0)
id = (10.00, 200.00)
Value of test after calling ChangeReferenceFunction(100, 200.0)
id = (100.00, 200.00)
Value of test after calling ChangeMethod(1000, 2000.0)
id = (1,000.00, 2,000.00)
Press Enter to terminate...

326 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 326

“Oh, the Value and the Reference Can
Be Friends . . .” — Unifying the Type
System

Structures and classes do have one striking similarity: They both derive
from Object. In fact, all classes and structures, whether they say so or not,
derive from Object. This fact unifies the different variable types into one
all-encompassing class hierarchy.

Predefined structure types
The similarity between structures and simple value types is more than skin
deep. In fact, a simple value type is a structure. For example, int is another
name for the structure Int32, double is another name for the structure
Double, and so forth. Table 14-1 shows the full list of types and their corre-
sponding struct names.

Table 14-1 The struct Names for the Intrinsic Variable Types
Type Name struct Name

bool Boolean

byte Byte

sbyte SByte

char Char

decimal Decimal

double Double

float Single

int Int32

uint UInt32

long Int64

ulong UInt64

object Object

short Int16

ushort UInt16

327Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 327

The string type is a reference type, not a value type, so no struct exists for
it. Instead, string corresponds to class String. Recall, however, the string is
a special C# animal, as it has been granted some unusual struct-like proper-
ties. Chapter 9 discusses the string type in detail.

So, how do common structures unify the
type system? An example
An int is another name for Int32 (a kind of alias, really). Because all
structs derive from Object, int must derive from Object as well. This
leads to some fascinating results, as the following program demonstrates:

// TypeUnification - demonstrate how int and Int32

// are actually the same thing and
// how they derive from Object
using System;
namespace TypeUnification
{
public class Program
{
public static void Main(string[] args)
{
// create an int and initialize it to zero
int i = new int(); // yes, you can do this
// assign it a value and output it via the
// IFormattable interface that Int32 implements
i = 1;
OutputFunction(i);
// the constant 2 also implements IFormattable
OutputFunction(2);
// in fact, you can call a method of a constant
Console.WriteLine(“Output directly = {0}”, 3.ToString());
// this can be truly useful; you can pick an int out of a list:
Console.WriteLine(“\nPick the integers out of a list”);
object[] objects = new object[5];
objects[0] = “this is a string”;
objects[1] = 2;
objects[2] = new Program();
objects[3] = 4;
objects[4] = 5.5;
for(int index = 0; index < objects.Length; index++)
{
if (objects[index] is int)
{
int n = (int)objects[index];
Console.WriteLine(“the {0}th element is a {1}”, index, n);

328 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 328

}
}
// type unity allows you to display value and
// reference types without differentiating them
Console.WriteLine(“\nDisplay all the objects in the list”);
int nCount = 0;
foreach(object o in objects)
{
Console.WriteLine(“Objects[{0}] is <{1}>”,
nCount++, o.ToString()); // all objects implement IFormattable

}
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
// OutputFunction - outputs any object that implements ToString()
//
public static void OutputFunction(IFormattable id)
{
Console.WriteLine(“Value from OutputFunction = {0}”,

id.ToString());
}
// ToString - provide a simple string function for the Program class
override public string ToString()
{
return “TypeUnification Program”;

}
}

}

This program puts the Int32 struct through its paces. Main() begins by
creating an int object i. Main() uses the Int32() default constructor (or
you could say the int() constructor) to initialize i to zero. The program
continues by assigning a value to i. Admittedly, this differs slightly from the
format you would use for a structure that you may create.

Main() passes the variable i to OutputFunction(), which is declared
to accept an object that implements the IFormattable interface. The
IFormattable interface is similar to the IDisplayable interface that I
define in other programs — the only method in IFormattable is ToString.
All classes and structures inherit the IFormattable interface from Object,
so all objects, whether reference or value types, implement ToString().

OutputFunction() tells the IFormattable object to display itself — the
Int32 variable has no problem because it has its own ToString() method.
This is demonstrated even more graphically in the call OutputFunction(2).
Being of type Int32, the constant 2 also implements IFormattable. Finally,
just to shove your nose in it, Main() invokes 3.ToString() directly. The
output from this first section of Main() is as follows:

329Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 329

Value from OutputFunction = 1
Value from OutputFunction = 2
Output directly = 3

The program now enters a unique section. Main() declares an array of
objects of type Object. It stores a string in the first element, an int in the
second, an instance of class Program in the third, and so on. This is allowed
because String, Int32, and Program all derive from Object. An array inside
class Program that stores an instance of Program? Getting dizzy?

The program then loops through the objects in the array. Main() is able to
pick out the integers by asking each object whether it IS_A Int32 using the
is keyword. The output from this portion of the program is as follows
(pardon expressions like 1th and 3th):

Pick the integers out of a list
the 1th element is a 2
the 3th element is a 4

The program completes its showing off by again using the Object lineage. All
subclasses of Object — that would be all classes — implement ToString().
Therefore, if you just want to display the members of the object array, you
really don’t need to worry about their type. The final section of Main() loops
through the object array again, this time asking each object to format itself
using its ToString() method. The results appear as follows:

Display all the objects in the list
Objects[0] is <this is a string>
Objects[1] is <2>
Objects[2] is <TypeUnification Program>
Objects[3] is <4>
Objects[4] is <5.5>
Press Enter to terminate...

Like animals coming off of Noah’s Ark, each object displays itself as one of its
kind. I implemented a trivial ToString() for class Program just to show that
it knows how to play nice with all the other classes.

In fact, this ToString() property is undoubtedly how Console.Write()
can perform its magic. I haven’t looked into the source code, but I would bet
that Write() accepts its arguments as objects. It can then simply invoke
ToString() on the object to convert it into displayable format (other than
the first argument, which may contain {n} format controls).

Boxing and unboxing value types
What really makes both reference types and value types — like int, bool,
char, and any struct — first-class citizens is a technique called boxing. In

330 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 330

many situations, the compiler temporarily converts value-type objects into
reference-type objects. Boxing means stuffing a piece of value-type data into
a reference-type object on the heap. Here’s an example that involves boxing:

int i = 999; // a simple int (a value type)
object o = i; // putting i into a reference-type box
int j = (int)o; // taking 999 out of the box

On the flip side, what gets boxed must sooner or later get unboxed as well,
requiring a cast. In the TypeUnification example shown earlier, every
assignment to object requires boxing, and the casts that back out of object
variables require unboxing.

Both operations consume some time. Boxing takes up to 20 times longer than
an ordinary assignment, and unboxing takes 4 times longer. It also takes some
memory space (an extra object on the heap), so a lot of boxing going on can
cost your program. Boxing takes place automatically in many situations,
behind your back, including argument passing, function returns, assignments,
working with arrays of type object[], WriteLine() calls, and more. Avoid
boxing/unboxing when you can by, for instance, calling ToString() for value
types in WriteLine(), avoiding arrays of object, and using the new generic
collection classes discussed in Chapter 15.

331Chapter 14: When a Class Isn’t a Class — The Interface and the Structure

22_597043 ch14.qxd 9/20/05 2:17 PM Page 331

332 Part V: Beyond Basic Classes

22_597043 ch14.qxd 9/20/05 2:17 PM Page 332

Chapter 15

Asking Your Pharmacist
about Generics

In This Chapter
� Collecting things: benefits and problems

� Saving time and code with generic collection classes

� Writing your own generic classes, methods, and interfaces

C# provides lots of specialized alternatives to the arrays introduced in
Chapter 6. This chapter describes these lists, stacks, queues, and other

array-like collection classes, such as the versatile ArrayList, which have to
date been the prescription of choice for many programming needs. Unlike
arrays, though, these collections aren’t type-safe and can be costly to use.

But as with prescriptions at your local pharmacy, you can save big by opting
for a generic version. Generics are a new feature introduced in C# 2.0.
Generics are fill-in-the-blanks classes, methods, and interfaces. For example,
the List<T> class defines a generic array-like list that’s very comparable to
ArrayList. When you pull List<T> off the shelf to instantiate your own list
of, say, ints, you replace T with int, as follows:

List<int> myList = new List<int>(); // a list limited to ints

The versatile thing is that you can instantiate a List<T> for any single data
type — string, Student, BankAccount, CorduroyPants, whatever — and
it’s still type-safe like the array, without nongeneric costs. It’s the super-array.
(I explain type-safety and the costs of nongeneric collections in this chapter.)

Generics come in two flavors in C#: the built-in generic collection classes like
List<T> and a variety of roll-your-own items. After a quick tour of nongeneric
and generic collection classes, this chapter covers roll-your-own generic
classes, generic methods, and generic interfaces.

23_597043 ch15.qxd 9/20/05 2:19 PM Page 333

Getting to Know Nongeneric Collections
Understanding what the new generics are and why they’re better is easier to
understand after you’ve had a brief dose of good old-fashioned nongenerics.

Arrays let you access random elements quickly and efficiently. But often
an array doesn’t quite fit your needs because it has the following big
disadvantages:

� A program must declare the size of the array when it is created. Unlike
Visual Basic, C# doesn’t let you change the size of an array after it’s
defined. What if you don’t know up-front how big it needs to be?

� Inserting or removing an element in the middle of an array is wildly inef-
ficient. You have to move all the elements around to make room.

Given these problems, C# provides many nongeneric collections as alterna-
tives to arrays. Each collection has its own strengths (and weaknesses).

Inventorying nongeneric collections
C# provides a well-stocked pharmacopoeia of array alternatives. Table 15-1
summarizes a few of the most useful nongeneric collections. One of them is
sure to have the characteristics you need (but don’t get hooked on them; a
better option — generics — is described in a minute).

Table 15-1 Nongeneric Collection Classes
Class Characteristics

ArrayList An array that grows automatically, as necessary. This work-
horse has the array’s advantages but not its disadvantages,
though of course it’s not perfect. Unlike arrays, all nonarray
collections grow as needed.

LinkedList C# has no nongeneric linked list, but Bonus Chapter 3 on the
CD shows you how to roll your own. After that useful exercise,
however, you’ll prefer C#’s new generic LinkedList. Any
LinkedList beats the array at insertion, but accessing spe-
cific elements is slow compared to array and ArrayList.

Queue This is a first-come, first-served line. Good citizens join the
queue (get “enqueued”) at the back and get their Fatburgers at
the front (get “dequeued”). You can’t insert or remove ele-
ments in the middle.

334 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 334

Class Characteristics

Stack The standard analogy is a stack of plates. To add elements, you
push clean plates to the top of the stack, and to remove them,
you pop them from there too. It’s last-come, first-served. You
can’t insert elements in the middle.

Dictionary This is a collection of objects well-suited for quick lookup. You
find things quickly by asking for the key, just as you find defini-
tions in a dictionary by looking up a word. C#’s nongeneric
“dictionary” class goes by the tasty moniker of Hashtable.

Using nongeneric collections
Collections are easier to use than arrays. Instantiate a collection object, add
elements to it, iterate it (the best way is with foreach), and so on. The
NongenericCollections example on the CD shows several different collec-
tions in action, including the Stack and the Hashtable (“dictionary”). The
following code excerpt demonstrates ArrayList, one of the most commonly
used collections:

// NongenericCollections - demonstrate using the nongeneric collection classes
using System;
using System.Collections; // you need this
namespace NongenericCollections
{
public class Program
{
public static void Main(string[] args)
{
// instantiate an ArrayList (you can give an initial size or not)
ArrayList aListWithSpecifiedSize = new ArrayList(1000);
ArrayList aList = new ArrayList(); // default size (16)
aList.Add(“one”); // adds to the “end” of empty list
aList.Add(“two”); // order is now “one”, “two”
// collection classes work with foreach
foreach(string s in aList)
{
// write string and its index
Console.WriteLine(s + “ “ + aList.IndexOf(s));

}
// ... full example on CD includes several more collection types
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
public class Student
// code omitted to save space - see the CD
}

335Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 335

Because of the advent of generics (which are described next), I don’t explore
these collections in detail, but you can try them out by using these examples.
Look up “System.Collections namespace” in the Help Index. These classes
have a variety of useful methods and properties.

Writing a New Prescription: Generics
Now that generics have arrived, you’ll probably seldom ever use any of the
collection classes described in the preceding sections. Generics really are
better for two reasons: safety and performance.

Generics are type-safe
When you declare an array, you must specify the exact type of data it can
hold. If you specify int, the array can’t hold anything but ints or other
numeric types that C# can convert implicitly to int. You get compiler errors
at build time if you try to put the wrong kind of data into an array. Thus the
compiler enforces type-safety, enabling you to fix a problem before it ever gets
out the door.

A compiler error beats the heck out of a run-time error. In fact, it beats every-
thing but a royal flush or a raspberry sundae. Compiler errors are good
because they help you spot problems now.

Nongeneric collections aren’t type-safe. In C#, everything IS_A Object because
Object is the base type for all other types, both value-types and reference-
types. (See the section on unifying the type system in Chapter 14.) But when
you store value-types (numbers, bools, and structs) in a collection, they
must be boxed going in and unboxed coming back out. (See Chapter 14 for the
lowdown on boxing.) It’s as if you’re putting items in an egg carton and have
to stuff them inside the eggs so they fit. (Reference-types, such as string,
Student, or BankAccount, don’t undergo boxing.)

The first consequence of nongenerics lacking type-safety is that you need a
cast, as shown in the following code, to get the original object out of the
ArrayList because it’s hidden inside an egg, er, Object:

ArrayList aList = new ArrayList();
// add five or six items, then ...
string myString = (string)aList[4]; // cast to string

336 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 336

Fine, but the second consequence is this: You can put eggs in the carton,
sure. But you can also add marbles, rocks, diamonds, fudge — you name it.
An ArrayList can hold many different types of objects at the same time. So
it’s legal to write this:

ArrayList aList = new ArrayList();
aList.Add(“a string”); // string -- OK
aList.Add(3); // int -- OK
aList.Add(aStudent); // Student -- OK

However, if you put a mixture of incompatible types into an ArrayList (or
other nongeneric collection), how do you know what type is in, say, aList[3]?
If it’s a Student and you try to cast it to string, you get a run-time error. It’s
just like Harry Potter reaching into a box of Bertie Botts’s Every Flavor Beans.
He doesn’t know whether he’ll get raspberry beans or earwax.

To be safe, you have to resort to using the is operator (discussed in
Chapter 12) or the alternative, the as operator, as follows:

if(aList[i] is Student) // is the object there a Student?
{
Student aStudent = (Student)aList[i]; // yes, safe cast

}
// or ...
Student aStudent = aList[i] as Student; // extract a Student, if present
if(aStudent != null) // if not, “as” returns null
{
// ok to use aStudent; “as” operator worked

}

You can avoid all this extra work by using generics. Generic collections work
like arrays: You specify the one and only type they can hold when you
declare them.

Generics are efficient
Polymorphism allows the type Object to hold any other type — like the pre-
vious egg carton analogy. But you can incur a penalty by putting in value-type
objects — numeric and bool types and structs — and taking them out. (See
Chapter 13 for more on polymorphism.) That’s because value-type objects
that you add have to be boxed.

Boxing isn’t too worrisome unless your collection is big. If you’re stuffing a
thousand, or a million, ints into a nongeneric collection, it takes about 20
times as long, plus extra space on the memory heap, where reference-type
objects are stored. Boxing can also lead to subtle errors that will have you
tearing out your hair. Generic collections eliminate boxing and unboxing.

337Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 337

Using Generic Collections
Now that you know why generic collections are preferable, it’s time to see
what they are and how to use them. Table 15-2 provides a partial list of
generic collection classes (with their pregeneric equivalents in column 3).

Table 15-2 Some Generic Collection Classes
Class Description Similar To

List<T> A dynamic array ArrayList

LinkedList<T> A linked list The LinkedList in
Bonus Chapter 3

Queue<T> A first-in, first-out list Queue

Stack<T> A last-in, first-out list Stack

Dictionary<T> A collection of key/value pairs Hashtable

Besides those, there are several more, plus corresponding interfaces for most,
such as ICollection<T> and IList<T>. Look up “System.Collections.Generic
namespace” in Help for more information about them.

Figuring out <T>
In the mysterious-looking <T> notation, <T> is a placeholder for some partic-
ular data type. To bring this symbolic object to life, instantiate it by inserting
a real type, as follows:

List<int> intList = new List<int>(); // instantiating for int

For example, in the next section, you instantiate List<T>, the generic
ArrayList, for types int, string, and Student. By the way, T isn’t sacred.
You can use <dummy> or <myType> if you like. Common ones are T, U, V, and
so on.

Using List<T>
If ArrayList was one of the most-used nongeneric collections, List<T>,
its generic counterpart, is likely to follow in Daddy’s footsteps. The
GenericCollections example on the CD (which is more complete than

338 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 338

the listing that follows) shows some of the things you can do with List<T>
(you need to comment out the lines that produce compiler errors before it
will run):

// GenericCollections - demonstrate the generic collections
using System;
using System.Collections;
using System.Collections.Generic;
namespace GenericCollections
{
public class Program
{
public static void Main(string[] args)
{
// an ArrayList declaration for comparison
ArrayList aList = new ArrayList();
// now List<T>: note angle brackets plus parentheses in
// List<T> declaration; T is a “type parameter”
List<string> sList = new List<string>(); // instantiate for string type
sList.Add(“one”);
sList.Add(3); // compiler error here!
sList.Add(new Student(“du Bois”)); // compiler error here!
List<int> intList = new List<int>(); // instantiate for int
intList.Add(3); // fine; note, no boxing
intList.Add(4);
Console.WriteLine(“Printing intList:”);
foreach(int i in intList) // foreach just works for all collections
{
Console.WriteLine(“int i = “ + i.ToString()); // note: no casting

}
// instantiate for Student
List<Student> studentList = new List<Student>();
Student student1 = new Student(“Vigil”);
Student student2 = new Student(“Finch”);
studentList.Add(student1);
studentList.Add(student2);
Student[] students = new Student[]

{ new Student(“Mox”), new Student(“Fox”) };
studentList.AddRange(students); // add whole array to List
Console.WriteLine(“Num students in studentList = {0}”, studentList.Count);
// search with IndexOf()
Console.WriteLine(“Student2 at “ + studentList.IndexOf(student2));
string name = studentList[3].Name; // access list by index
if(studentList.Contains(student1)) // search with Contains()
{
Console.WriteLine(student1.Name + “ contained in list”);

}
studentList.Sort(); // assumes Student implements IComparable interface
studentList.Insert(3, new Student(“Ross”));
studentList.RemoveAt(3); // deletes the element
Console.WriteLine(“removed {0}”, name); // name defined above
Student[] moreStudents = studentList.ToArray(); // convert list to array
// wait for user to acknowledge the results

339Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 339

Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
public class Student : IComparable
// omitted to save space - see the CD

}

The code shows three instantiations of List<T>: for int, string, and
Student. It also demonstrates the following:

� Counting on the list’s type-safety to avoid adding the wrong data types

� Using the foreach loop on List<T>, as on any collection

� Adding objects, both singly and a whole array at a time

� Sorting the list (assuming that the items implement the IComparable
interface)

� Inserting a new element between existing elements

� Obtaining a count of elements in the list

� Seeing if the list contains a particular object

� Removing an element from the list (it’s deleted, not returned)

� Copying the elements in the list into an array

That’s only a sampling of the List<T> methods. The other generic collections
have different sets of methods but are otherwise much the same in use.

The real improvement here is that the compiler prevents adding types to a
generic class other than the type it was instantiated for. Bonus Chapter 3 on
the CD explores iterating collections efficiently.

Classy Generics: Writing Your Own
Besides the built-in generic collection classes, C# 2.0 lets you write your own
generic classes, whether they’re collections or not. The point of generic
classes is that you can create generic versions of classes that you design.

Picture a class definition full of <T> notations. When you instantiate such a
class, you specify a type to replace its generic placeholders, just as you do
with the generic collections. Note how similar these declarations are:

LinkedList<int> aList = new LinkedList<int>();
MyClass<int> aClass = new MyClass<int>();

340 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 340

Both are instantiations of classes — one built-in and one programmer-
defined. Not every class makes sense as a generic, but I show you an example
of one that does later in this chapter.

Classes that logically could do the same things for different types of data make
the best generic classes. Collections of one sort or another are the prime exam-
ple. If you find yourself mumbling, “I’ll probably have to write a version of this
for Student objects, too,” it’s probably a good candidate for generics.

To show you how to write your own generic class, the following example
develops a special kind of queue collection class called a priority queue.

Shipping packages at OOPs
Here’s the scene for the example: a busy shipping warehouse similar to UPS
or FedEx. Packages stream in the front at OOPs, Inc. and get shipped out the
back as soon as they can be processed. Some packages need to go by super-
fast next-day teleportation; some can go a tiny bit slower, by second-day
cargo pigeon; and most can take the snail route: ground delivery in your
cousin Fred’s ’82 Volvo.

But the packages don’t arrive at the warehouse in any particular order, so as
they come in, you need to expedite some as next-day or second-day. Because
some packages are more equal than others, they get prioritized, and the folks
in the warehouse give the high-priority packages special treatment.

Except for the priority aspect, this is tailor-made for a queue data structure.
Queues are perfect for anything that involves turn-taking. You’ve stood (or
driven) in thousands of queues in your life, waiting for your turn to buy
Twinkies or pay too much for prescriptions.

The shipping warehouse scenario is similar: New packages arrive and go to
the back of the line — normally. But because some have higher priorities,
they’re privileged characters, like those Premium Class folks at the airport
ticket counter. They get to jump ahead, either to the front of the line or not
far back from the front.

Queuing at OOPs: PriorityQueue
The shipping queue at OOPs deals with high-, medium-, and low-priority
packages coming in. Here are the queuing rules:

� High-priority packages (next-day) go to the front of the queue — but
behind any other high-priority packages that are already there.

341Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 341

� Medium-priority packages (second-day) go as far forward as possible —
but behind all the high-priority packages, even the ones that some lag-
gard will drop off later, and also behind other medium-priority packages
that are already in the queue.

� Low-priority ground-pounders must join at the very back of the queue.
They get to watch all the high priorities sail by to cut in front of them —
sometimes way in front of them.

C# comes with built-in queues, even generic ones. But it doesn’t come with a
priority queue, so you have to build your own. How? A common approach is
to embed several actual queues within a wrapper class, sort of like this:

class Wrapper // or PriorityQueue!
{
Queue queueHigh = new Queue ();
Queue queueMedium = new Queue ();
Queue queueLow = new Queue ();
// methods to manipulate the underlying queues...

The wrapper encapsulates three actual queues here (they could be generic),
and it’s up to the wrapper to manage what goes into which underlying queue
and how. The standard interface to the Queue class — as implemented in C# —
includes the following two key methods:

� Enqueue() (pronounced NQ) puts things into a queue at the back.

� Dequeue() (pronounced DQ) removes things from the queue at the front.

Wrappers are classes (or functions) that encapsulate complexity. A wrapper
may have an interface that’s very different from the interface(s) of what’s
inside it. But for the shipping priority queue, the wrapper provides the same
interface as a normal queue, thus pretending to be a normal queue itself. It
implements an Enqueue() method that gets an incoming package’s priority
and decides which underlying queue it gets to join. The wrapper’s
Dequeue() method finds the highest-priority Package in any of the underly-
ing queues. The formal name of this wrapper class is PriorityQueue.

Here’s the code for the PriorityQueue example on the CD:

// PriorityQueue - demonstrates using lower-level queue collection objects
// (generic ones at that) to implement a higher-level generic
// queue that stores objects in priority order
using System;
using System.Collections.Generic;
namespace PriorityQueue
{
class Program
{
//Main - fill the priority queue with packages, then
// remove a random number of them

342 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 342

static void Main(string[] args)
{
Console.WriteLine(“Create a priority queue:”);
PriorityQueue<Package> pq = new PriorityQueue<Package>();
Console.WriteLine(
“Add a random number (0 - 20) of random packages to queue:”);

Package pack;
PackageFactory fact = new PackageFactory();
// we want a random number less than 20
Random rand = new Random();
int numToCreate = rand.Next(20); // random int from 0 - 20
Console.WriteLine(“\tCreating {0} packages: “, numToCreate);
for (int i = 0; i < numToCreate; i++)
{
Console.Write(“\t\tGenerating and adding random package {0}”, i);
pack = fact.CreatePackage();
Console.WriteLine(“ with priority {0}”, pack.Priority);
pq.Enqueue(pack);

}
Console.WriteLine(“See what we got:”);
int nTotal = pq.Count;
Console.WriteLine(“Packages received: {0}”, nTotal);
Console.WriteLine(“Remove a random number of packages: 0-20: “);
int numToRemove = rand.Next(20);
Console.WriteLine(“\tRemoving up to {0} packages”, numToRemove);
for (int i = 0; i < numToRemove; i++)
{
pack = pq.Dequeue();
if (pack != null)
{
Console.WriteLine(“\t\tShipped package with priority {0}”,

pack.Priority);
}

}
// see how many we “shipped”
Console.WriteLine(“Shipped {0} packages”, nTotal - pq.Count);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
//Priority - instead of priorities like 1, 2, 3, ... these have names
enum Priority // I explain the enum later
{
Low, Medium, High

}
// IPrioritizable - define a custom interface: classes that can be added to
// PriorityQueue must implement this interface
interface IPrioritizable
{
Priority Priority { get; } // Example of a property in an interface

}
//PriorityQueue - a generic priority queue class

343Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 343

// types to be added to the queue *must*
// implement IPrioritizable interface
class PriorityQueue<T> where T : IPrioritizable // <-- see discussion later
{
//Queues - the three underlying queues: all generic!
private Queue<T> queueHigh = new Queue<T>();
private Queue<T> queueMedium = new Queue<T>();
private Queue<T> queueLow = new Queue<T>();
//Enqueue - prioritize T and add it to correct queue
public void Enqueue(T item)
{
switch (item.Priority) // require IPrioritizable to ensure this property
{
case Priority.High:
queueHigh.Enqueue(item);
break;

case Priority.Low:
queueLow.Enqueue(item);
break;

case Priority.Medium:
queueMedium.Enqueue(item);
break;

default:
throw new ArgumentOutOfRangeException(item.Priority.ToString(),
“bad priority in PriorityQueue.Enqueue”);

}
}
//Dequeue - get T from highest-priority queue available
public T Dequeue()
{
// find highest-priority queue with items
Queue<T> queueTop = TopQueue();
// if a non-empty queue found
if (queueTop != null && queueTop.Count > 0)
{
return queueTop.Dequeue(); // return its front item

}
// if all queues empty, return null (could throw an exception instead)
return default(T); // what’s this? see discussion

}
//TopQueue - what’s the highest-priority underlying queue with items?
private Queue<T> TopQueue()
{
if (queueHigh.Count > 0) // anything in high-priority queue?
return queueHigh;

if (queueMedium.Count > 0) // anything in medium-priority queue?
return queueMedium;

if (queueLow.Count > 0) // anything in low-priority queue?
return queueLow;

return queueLow; // all empty, so return an empty queue
}
//IsEmpty - check whether there’s anything to dequeue
public bool IsEmpty()

344 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 344

{
// true if all queues are empty
return (queueHigh.Count == 0) & (queueMedium.Count == 0) &

(queueLow.Count == 0);
}
//Count - how many items are in all queues combined?
public int Count // implement this one as a read-only property
{
get { return queueHigh.Count + queueMedium.Count + queueLow.Count; }

}
}
//Package - an example of a prioritizable class that can be stored in
// the priority queue
class Package : IPrioritizable
{
private Priority priority;
//constructor
public Package(Priority priority)
{
this.priority = priority;

}
//Priority - return package’s priority - read-only
public Priority Priority
{
get { return priority; }

}
// plus ToAddress, FromAddress, Insurance, etc.

}
//omitted class PackageFactory - see the CD}

PriorityQueue is a bit longer than most examples in this book, so you need
to look at each part carefully. After a look at the target class, Package, you
can follow a package’s journey through the Main() function near the top.

Unwrapping the package
Class Package is intentionally simple for this example (see the preceding list-
ing). It focuses on the priority part, although a real Package object would
include other members. All that Package needs for the example are a private
data member to store its priority, a constructor to create a package with a
specific priority, and a method (implemented as a read-only property here) to
return the priority.

Two aspects of class Package require some explanation: the Priority type
and the IPrioritizable interface that Package implements.

345Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 345

Specifying the possible priorities
Priorities are measured with an enumerated type, or enum, called Priority.
The Priority enum looks like this:

//Priority - instead of priorities like 1, 2, 3, ... they have names
enum Priority // see “Illuminating an Enumeration”
{
Low, Medium, High

}

Implementing the IPrioritizable interface
Any object going into the PriorityQueue must “know” its own priority. (A
general object-oriented principle makes objects responsible for themselves.)

You can informally make sure that class Package has a member to retrieve
its priority, but it’s better to make that a requirement that the compiler can
enforce. You require any object placed in the PriorityQueue to have such a
member.

One way to enforce this requirement is to insist that all shippable objects
implement the IPrioritizable interface, which follows:

//IPrioritizable - define a custom interface: classes that can be added to
// PriorityQueue must implement this interface
interface IPrioritizable // any class can implement this interface
{
Priority Priority { get; }

}

The notation { get; } is how you write a property in an interface declara-
tion. Notice that the body of the get accessor is missing, but the interface
makes it clear that Priority is a read-only (get-only) property that returns a
value from the Priority enum.

Class Package implements the interface by providing a fleshed-out imple-
mentation for the Priority property, as follows:

public Priority Priority
{
get { return priority; }

}

You encounter the other side of this enforceable requirement in the declara-
tion of class PriorityQueue, coming up soon.

346 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 346

Touring Main()
Before you spelunk the PriorityQueue class itself, it’s useful to get an
overview of how it works in practice at OOPs, Inc. Here’s the Main() function
for the PriorityQueue example:

//Main - fill the priority queue with packages, then
// remove a random number of them
static void Main(string[] args)
{

// create a priority queue
PriorityQueue<Package> pq = new PriorityQueue<Package>();
// add a random number (0 - 20) of random packages to queue
Package pack;
PackageFactory fact = new PackageFactory();
// we want a random number less than 20
Random rand = new Random();
int numToCreate = rand.Next(20); // random int from 0 - 20
for (int i = 0; i < numToCreate; i++)
{
// generate a random package and add to priority queue
pack = fact.CreatePackage();
pq.Enqueue(pack);

}
// see what we got
int nTotal = pq.Count;
Console.WriteLine(“Packages received: {0}”, nTotal);
// remove a random number of packages: 0-20
int numToRemove = rand.Next(20);
for (int i = 0; i < numToRemove; i++)
{
pack = pq.Dequeue();
if (pack != null)
{
Console.WriteLine(“Shipped package with priority {0}”, pack.Priority);

}
}
// see how many we “shipped”
Console.WriteLine(“Shipped {0} packages”, nTotal - pq.Count);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}

Here’s what happens in Main():

1. Instantiates a PriorityQueue object for type Package.

2. Creates a PackageFactory object whose job is to create new packages
with randomly selected priorities, on demand.

347Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 347

A factory is a class or method that creates objects for you. You tour the
PackageFactory in the section “Using a (nongeneric) Simple Factory
class,” later in the chapter.

3. Uses the .NET library class Random to generate a random number and
then calls PackageFactory to create that many new Package objects
with random priorities.

4. Adds each package to the PriorityQueue with pq.Enqueue(pack).

5. Writes the number of packages created and then randomly removes
some of them from the PriorityQueue.

6. Ends after writing the number of packages removed.

Writing generic code the easy way
How do you go about writing a generic class, with all those <T>s? Looks pretty
confusing, doesn’t it? Well, it’s not so hard, as this section demonstrates.

The simple way to write a generic class is to write a nongeneric version
first, and then substitute the <T>s. So, for example, you would write the
PriorityQueue class for Package objects, test it, and then “genericize” it.

Here’s a small piece of a nongeneric PriorityQueue to illustrate:

public class PriorityQueue
{
//Queues - the three underlying queues: all generic!
private Queue<Package> queueHigh = new Queue<Package>();
private Queue<Package> queueMedium = new Queue<Package>();
private Queue<Package> queueLow = new Queue<Package>();
//Enqueue - prioritize a Package and add it to correct queue
public void Enqueue(Package item)
{
switch(item.Priority) // Package has this property
{
case Priority.High:
queueHigh.Enqueue(item);
break;

case Priority.Low:
queueLow.Enqueue(item);
break;

case Priority.Medium:
queueMedium.Enqueue(item);
break;

}
}
// and so on ...

348 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 348

Writing the class nongenerically first makes testing its logic easier. When the
logic is all straight, you can use find-and-replace to replace the name Package
with <T>. (You’ll soon see that there’s a bit more to it than that, but not much.)

Saving PriorityQueue for last
Why would a priority queue be last? Seems a little backward to me. But
you’ve seen the rest. Now it’s time to examine the PriorityQueue class
itself. This section shows the code, and then takes you through it and shows
you how to deal with a couple of small issues. I take it a piece at a time.

The underlying queues
The PriorityQueue is a wrapper class that hides three ordinary Queue<T>
objects, one for each priority level. Here’s the first part of PriorityQueue,
showing the three underlying queues (now generic):

//PriorityQueue - a generic priority queue class; types to be added to the
// queue *must* implement IPrioritizable interface
class PriorityQueue<T> where T: IPrioritizable
{
//Queues - the three underlying queues: all generic!
private Queue<T> queueHigh = new Queue<T>();
private Queue<T> queueMedium = new Queue<T>();
private Queue<T> queueLow = new Queue<T>();
// the rest will follow shortly ...

These lines declare three private data members of type Queue<T> and initial-
ize them by creating the Queue<T> objects. I say more later about that odd-
looking class declaration line above the “subqueue” declarations.

The Enqueue() method
Enqueue() adds an item of type T to the PriorityQueue. Its job is to look at
the item’s priority and put it into the correct underlying queue. In the first
line, it gets the item’s Priority property and switches based on that value.
To add the item to the high-priority queue, for example, Enqueue() turns
around and enqueues the item in the underlying queueHigh. Here’s
PriorityQueue.Enqueue():

//Enqueue - prioritize T and add it to correct queue
public void Enqueue(T item)
{
switch(item.Priority) // require IPrioritizable to ensure this property
{
case Priority.High:
queueHigh.Enqueue(item);
break;

case Priority.Low:

349Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 349

queueLow.Enqueue(item);
break;

case Priority.Medium:
queueMedium.Enqueue(item);
break;

}
}

The Dequeue() method
Dequeue()’s job is a bit trickier. It must locate the highest-priority underlying
queue that has contents and then retrieve the front item from that subqueue.
Dequeue() delegates the first part of the task, finding the highest-priority
queue that’s not empty, to a private TopQueue() method (described next).
Then Dequeue() calls the underlying queue’s Dequeue() method to retrieve
the frontmost object, which it returns. Here’s how Dequeue() works:

//Dequeue - get T from highest priority queue available
public T Dequeue()
{
// find highest-priority queue with items
Queue<T> queueTop = TopQueue();
// if a non-empty queue found
if (queueTop != null & queueTop.Count > 0)
{
return queueTop.Dequeue(); // return its front item

}
return default(T); // if all queues empty, return null

}

The only difficulty arises if none of the underlying queues have any
packages — in other words, the whole PriorityQueue is empty. What do
you return in that case? Dequeue() returns null. The client — the code
that calls PriorityQueue.Dequeue() — should check Dequeue()’s
return value in case it’s null. Where’s the null it returns? It’s that odd
duck, default(T), at the end. I deal with default(T) in a moment.

The TopQueue() utility method
Dequeue() relies on the private method TopQueue() to find the highest-priority,
nonempty underlying queue. TopQueue() just starts with queueHigh and asks
for its Count property. If that’s greater than zero, the queue contains items, so
TopQueue() returns a reference to the whole underlying queue that it found.
(TopQueue()’s return type is Queue<T>.) On the other hand, if queueHigh is
empty, TopQueue() tries queueMedium and then queueLow.

What happens if all the subqueues are empty? TopQueue() could return
null, but it’s more useful to simply return one of the empty queues. When
Dequeue() then calls the returned queue’s Dequeue() method, it returns
null. TopQueue() works like this:

350 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 350

//TopQueue - what’s the highest-priority underlying queue with items?
private Queue<T> TopQueue()
{
if (queueHigh.Count > 0) // anything in high priority queue?
return queueHigh;

if (queueMedium.Count > 0) // anything in medium priority queue?
return queueMedium;

if (queueLow.Count > 0) // anything in low priority queue?
return queueLow;

return queueLow; // all empty, so return an empty queue
}

The remaining PriorityQueue members
It’s useful for PriorityQueue to know whether it’s empty and, if not, how
many items it contains (an object should be responsible for itself). Look back
at PriorityQueue’s IsEmpty() method and Count property in the listing.

Tending to unfinished business
PriorityQueue still needs a couple of small bits of spackling. Here are the
issues:

� By itself, PriorityQueue wouldn’t prevent you from trying to instantiate
it for, say, int or string or Student — things that don’t have priorities.
You need to constrain the class so that it can be instantiated only for
types that implement IPrioritizable. Attempting to instantiate for a
non-IPrioritizable class should result in a compiler error.

� The Dequeue() method for PriorityQueue returns the value null
instead of an actual object. But generic types like <T> don’t have a natural
default null value the way things like ints, strings, and down-and-out
object references do. That part of it needs to be genericized, too.

Adding constraints
PriorityQueue must be able to ask an object what its priority is. To make
that work, all classes that are storable in PriorityQueue must implement
the IPrioritizable interface, as Package does. Package lists
IPrioritizable in its class declaration heading, like this:

class Package : IPrioritizable

Then it implements IPrioritizable’s Priority property.

A matching limitation is needed for PriorityQueue. You want the com-
piler to squawk if you try to instantiate for a type that doesn’t implement
IPrioritizable. In the nongeneric form of PriorityQueue (written
specifically for type Package, say), the compiler will squeal automatically

351Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 351

(I recommend ear plugs) when one of your priority queue methods tries to
call a method that Package doesn’t have. But in C# 2.0, for generic classes,
you can go that one better with an explicit constraint. Because you could
instantiate the generic class with literally any type, you need a way to tell the
compiler which types are acceptable — because they’re guaranteed to have
the right methods.

You add the constraint by specifying IPrioritizable in the heading for
PriorityQueue, like this:

class PriorityQueue<T> where T: IPrioritizable

Did you notice the where clause before? The boldfaced where clause here
specifies that T must implement IPrioritizable. That’s the enforcer. It means,
“Make sure that T implements the IPrioritizable interface — or else!”

You specify constraints by listing one or more of the following (separated by
commas) in a where clause:

� The name of a required base class that T must derive from (or be)

� The name of an interface that T must implement, as shown in the previ-
ous example

Additional constraint options include the struct, class, and new() key-
words. You meet new() in action in the section “Building a generic factory,”
later in the chapter. For information about the class and struct constraints,
look up “Generics, constraints” in the Help Index.

These constraint options give you quite a bit of flexibility for making your
new generic class behave just as you want. And a well-behaved class is a
pearl beyond price. Here’s an example of a hypothetical generic class
declared with multiple constraints on T:

class MyClass<T> : where T: class, IPrioritizable, new()
{ ... }

Here, T must be a class, not a value type; it must implement IPrioritizable;
and it must contain a constructor without parameters. Pretty strict!

What if you have two generic parameters and both need to be constrained?
(Yes, you can have more than one generic parameter. You see this for real
later in the chapter.) Here’s how to use two where clauses:

class MyClass<T, U> : where T: IPrioritizable, where U: new()

Determining the null value for type T
Huh? Well, as I mentioned previously, each type has a default value that
signifies “nothing” for that type. For ints and other numbers, it’s 0 (or 0.0).

352 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 352

For string, it’s an empty string: “”. For bool, it’s false. And for all refer-
ence types, such as Package, it’s null.

But because a generic class like PriorityQueue can be instantiated for
almost any data type, C# can’t predict what would be the proper null value
to use in the generic class’s code. For example, with the Dequeue() method
of PriorityQueue, you may face this situation: You call Dequeue() to get a
package, but none are available. What do you return to signify “nothing”?
Because Package is a class type, it should return null. That signals the
caller of Dequeue() that there was nothing to return (and the caller must
check for a null return value).

The compiler can’t make sense of the null keyword in a generic class
because the class may be instantiated for all sorts of data types. That’s why
Dequeue() uses the following line instead:

return default(T); // return the right null for whatever T is

This line tells the compiler to look at T and return the right kind of null value
for that type. In the case of Package, which as a class type is a reference type,
the right null to return is, well, null. But for some other T, it may be differ-
ent, and the compiler could figure out what to use.

If you think PriorityQueue is flexible, take a look at an even more flexible
version of PriorityQueue — and encounter some object-oriented design
principles — in the ProgrammingToAnInterface program on the CD.

Generically Methodical
Often the methods in a generic class have to be generic themselves. You’ve
already seen one example in the previous section. The Dequeue() method in
PriorityQueue has a return type of T. This section shows how you can use
generic methods, both in generic and nongeneric classes.

Even methods in an ordinary nongeneric class can be generic. For example,
the following code shows a generic method called Swap(), which is designed
to exchange its two arguments. The first argument takes on the value of the
second argument, and vice versa. (Figure 6-2 in Chapter 6 illustrates a swap.)
To see that this works, you declare the two parameters to Swap() with the
ref keyword, so you can pass value-type arguments such as ints by refer-
ence and get the changed results back in those same parameters after the
Swap() call. (Chapter 7 discusses using ref parameters.)

Here’s the whole program in which Swap() is declared and used. See the
GenericMethod example on the CD.

353Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 353

// GenericMethod - a method that can process different data types
using System;
namespace GenericMethod
{
class Program
{
// Main - tests two versions of a generic method; one lives in this class on
// same level as Main; other lives in a generic class
static void Main(string[] args)
{
// test a generic method in a non-generic class
Console.WriteLine(“Generic method in non-generic class:\n”);
Console.WriteLine(“\tFirst, test it for int arguments”);
int nOne = 1;
int nTwo = 2;
Console.WriteLine(“\t\tBefore swap: nOne = {0}, nTwo = {1}”, nOne, nTwo);
Swap<int>(ref nOne, ref nTwo); // generic instantiation for int
Console.WriteLine(“\t\tAfter swap: nOne = {0}, nTwo = {1}”, nOne, nTwo);
Console.WriteLine(“\tSecond, test it for string arguments”);
string sOne = “one”;
string sTwo = “two”;
Console.WriteLine(“\t\tBefore swap: sOne = {0}, sTwo = {1}”, sOne, sTwo);
Swap<string>(ref sOne, ref sTwo); // generic instantiation for string
Console.WriteLine(“\t\tAfter swap: sOne = {0}, sTwo = {1}”, sOne, sTwo);
Console.WriteLine(“\nGeneric method in a generic class”);
Console.WriteLine(“\tFirst, test it for int and call”);
Console.WriteLine(“\t GenericClass.Swap with int arguments”);
nOne = 1;
nTwo = 2;
GenericClass<int> intClass = new GenericClass<int>();
Console.WriteLine(“\t\tBefore swap: nOne = {0}, nTwo = {1}”, nOne, nTwo);
intClass.Swap(ref nOne, ref nTwo);
Console.WriteLine(“\t\tAfter swap: nOne = {0}, nTwo = {1}”, nOne, nTwo);
Console.WriteLine(“\tSecond, test it for string and call “);
Console.WriteLine(“\t GenericClass.Swap with string arguments”);
sOne = “one”;
sTwo = “two”;
GenericClass<string> strClass = new GenericClass<string>();
Console.WriteLine(“Before swap: sOne = {0}, sTwo = {1}”, sOne, sTwo);
strClass.Swap(ref sOne, ref sTwo);
Console.WriteLine(“After swap: sOne = {0}, sTwo = {1}”, sOne, sTwo);
// wait for user to acknowledge the results
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

} // end Main
//static Swap - this is a generic method in a non-generic class
public static void Swap<T>(ref T leftSide, ref T rightSide)
{
T temp;
temp = leftSide;
leftSide = rightSide;

354 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 354

rightSide = temp;
}

} // end of Program class
//GenericClass - a generic class with its own Swap method
class GenericClass<T>
{
//Swap - this method is generic because it takes T parameters; note that
// we can’t use Swap<T> or we get a compiler warning about
// duplicating the parameter on the class itself
public void Swap(ref T leftSide, ref T rightSide)
{
T temp;
temp = leftSide;
leftSide = rightSide;
rightSide = temp;

}
}

}

Generic methods in nongeneric classes
The first version of Swap() in the previous example (there are two versions)
is a static function of class Program, declared like this:

public static void Swap<T>(ref T leftSide, ref T rightSide)

A generic method’s declaration resembles that for a generic class, with the
method name followed by generic parameters such as <T>. Then you can use
T for any type in the method, including method parameters and return type.

In the example, Main() calls this static Swap() twice, first instantiating it for
int and then for string (boldface in the listing). Here are the method calls
(that’s right, the instantiation is done in the call to the method):

Swap<int>(ref nOne, ref nTwo); // instantiate Swap for int
...
Swap<string>(ref sOne, ref sTwo); // instantiate Swap for string

When you instantiate Swap() for int, you can use int for the type argu-
ments in the call. Similarly, when you instantiate it for string, you can use
string for the type arguments.

A generic Swap() inside a generic class is a bit different, as described in the
next section.

355Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 355

Generic methods in generic classes
The previous example includes a generic class called, um, GenericClass,
which contains a generic Swap() method, declared like this (I show the class
header too so that you can see where the <T> parameter comes in):

class GenericClass<T> // <T> parameter is here but used in Swap below
{
public void Swap(ref T leftSide, ref T rightSide) ...

The basic difference between this Swap() and the static one in class Program
is that GenericClass provides the generic parameterization, so Swap()
doesn’t need to (and can’t). This version of Swap() lacks a <T>. You can still
refer to T in the method, though, as shown in Swap()’s parameter list.

Other than that, the two Swap() versions work alike. Here are some calls in
Main() to this version of Swap():

GenericClass<int> intClass = // create the object for int
new GenericClass<int>();

...
intClass.Swap(ref nOne, ref nTwo); // call its Swap()
...
GenericClass<string> strClass = // create the object for string
new GenericClass<string>();

...
strClass.Swap(ref sOne, ref sTwo); // call its Swap()

In this case, it’s the class that gets instantiated for int or string. As with the
other Swap(), you can then use T anywhere in Swap().

You may need to constrain
a generic method, too
You can also constrain generic methods to accept only types that meet certain
requirements, as you saw with the generic PriorityQueue class, earlier in the
chapter. In this case, you would declare the method something like this:

static void Sort<T>(T[] tArray) where T: IComparable<T>
{ ... }

For example, if the method declared here needs to compare its T-type para-
meters, T had better implement the IComparable interface — and the
generic one for <T> at that.

356 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 356

Up Against the (Generic) Interface
You’ve seen generic classes and methods, and you can probably think of
when you may want to use them. But when would you ever need an interface
that’s generic? (Nongeneric interfaces are covered in Chapter 14.)

To explore generic interfaces, this section presents an example that combines
generic classes, methods, and interfaces.

Nongeneric vs. generic interfaces
To see the point of a generic interface, rise high above a nongeneric interface
and a generic interface and look at them side by side to view the pattern:

//nongeneric // generic
interface IDisplayable interface ICertifiable<T>
{ {
void Display(); void Certify(T criteria);

} }

You’ve seen the pattern for using an interface. Declare the interface, as in
the previous code. Then implement it in a class somewhere in your code as
follows:

// nongeneric
class MyClass : IDisplayable ...

// generic
class MyClass : ICertifiable<MyCriteria> ...

Then complete the implementation in MyClass:

// nongeneric
class MyClass : IDisplayable
{
public void Display()
{
...

// generic
class MyClass : ICertifiable<MyCriteria> // here’s where you instantiate T
{
public void Certify(MyCriteria criteria)
{
...

357Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 357

Notice that it’s when you implement the generic interface in a class that you
instantiate its generic part by supplying a type name, such as MyCriteria.

Now you can see why the interface is generic: It needed to replace <T> for
use as a parameter type or return type in one or more of the interface’s meth-
ods. In other words, as with a generic class, you’re specifying replaceable
types to be used in the generic methods inside. Presumably those methods
need to be able to handle various data types, just as the collection class
List<T> or the method Swap<T>(T item1, T item2) do.

Generic interfaces are new, and I haven’t discussed all the ways to use them
yet. The chief way so far is in generic collections. Using a generic version of a
common C# interface, such as IComparable<T>, helps avoid boxing/unbox-
ing value-types. Generic interfaces can also help implement things like sort
functions for use with collections. (I explain boxing in Chapter 14.)

The following example is rather abstract, so I’ll build up to it carefully.

Using a (nongeneric)
Simple Factory class
Earlier in the chapter, in the “Classy Generics: Writing Your Own” section, I
use a Simple Factory object — although I just call it a “Factory” there — to
generate an endless stream of Package objects with randomized priority
levels. At long last, that simple class can be revealed:

// PackageFactory is part of the PriorityQueue example on the CD
// PackageFactory - we need a class that knows how to create a new
// package of any desired type on demand; such a
// class is called a factory class
class PackageFactory
{
Random rand = new Random(); // a random-number generator
//CreatePackage - this factory method selects a random priority,
// then creates a package with that priority
public Package CreatePackage()
{
// return a randomly selected package priority
// need a 0, 1, or 2 (values less than 3)
int nRand = rand.Next(3);
// use that to generate a new package
// casting int to enum is klunky, but it saves
// having to use ifs or a switch statement
return new Package((Priority)nRand);

}
}

358 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 358

Class PackageFactory has one data member and one method. (You can just as
easily implement a simple factory as a method rather than a class — for exam-
ple, a method in class Program.) When you instantiate a PackageFactory
object, it creates an object of class Random and stores it in the data member
rand. Random is a C# library class that generates random numbers. (Also take a
look at PackageFactoryWithIterator on the CD.)

Using PackageFactory
To generate a randomly prioritized Package object, you call your factory
object’s CreatePackage() method, as follows:

PackageFactory fact = new PackageFactory();
IPrioritizable pack = fact.CreatePackage(); // note the interface here

CreatePackage() tells its random number generator to generate a number
from 0 to 2 (inclusive) and uses the number to set the priority of a new
Package, which the method returns (to a Package or, better, an
IPrioritizable variable).

More about factories
Factories are great for generating lots of test data. (A factory needn’t use
random numbers — that’s just what I needed for the PriorityQueue
example.)

Factories improve programs by isolating object creation. Every time you men-
tion a specific class by name in your code, you create a dependency on that
class. The more such dependencies you have, the more “tightly coupled” —
bound together — your classes become. Programmers have long known that
they should avoid tight coupling. (One of the more decoupled approaches is to
use the factory via an interface, such as IPrioritizable, rather than a con-
crete class, such as Package.) Programmers still do create objects directly all
the time, with the new operator, and that’s fine. But factories can make code
less coupled and therefore more flexible.

Building a generic factory
What if you had a factory class that could create any object you ever needed?
The concept is intriguing and surprisingly easy to program, as the
GenericInterface example on the CD shows:

// GenericInterface - uses a generic interface to implement generic factories
using System;
using System.Collections.Generic;
namespace GenericInterface
{
class Program

359Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 359

{
static void Main(string[] args)
{
Console.WriteLine(“Create a factory to create Blobs without params”);
GenericFactory<Blob> blobFact = new GenericFactory<Blob>();
Console.WriteLine(“Create a factory to create Students, “ +
“parameterized with a string”);

GenericFactory1<Student, string> stuFact =
new GenericFactory1<Student, string>();

// see the CD for one more class, Thing, which needs 2 parameters
// set up places to save the created objects
List<Blob> bList = new List<Blob>();
Student[] students = new Student[10];
Console.WriteLine(“Create and store the objects:”);
for (int i = 0; i < 10; i++)
{
Console.WriteLine(“\tCreating a Blob - “ +
“Invokes the parameterless constructor.”);

Blob b = blobFact.Create();
b.name = “blob” + i.ToString();
bList.Add(b);
Console.WriteLine(“\tCreating a Student with its name member set - “ +
“Invokes the one-parameter constructor.”);

string sName = “student” + i.ToString();
students[i] = stuFact.Create(sName);
// ... items from CD omitted

}
// display results.
foreach(Blob b in bList)
{
Console.WriteLine(b.ToString());

}
foreach(Student s in students)
{
Console.WriteLine(s.ToString());

}
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}
// data classes: Student, Blob (and, on the CD, Thing)
// Blob - a simple class with only a default
// (parameterless) constructor (provided by C#)
// omitted class Blob to save space - see the CD
// Student - a class with default & one-param constructors
class Student : ISettable<string> // here’s the generic interface
{
// some members omitted to save space - see the CD
// parameterless constructor required in addition to one-param version
public Student() {} // you must supply this (C# won’t)
public Student(string name) // one-param constructor
{
this.name = name;

360 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 360

}
// implementation of ISettable
public void SetParameter(string name)
{
this.name = name;

}
// omitted ToString() - see the CD

}
// ... Thing - see the CD for an additional class that needs 2 parameters

// the ISettable interfaces used by the factories
interface ISettable<U>
{
void SetParameter(U u);

}
interface ISettable2<U, V>
{
void SetParameter(U u, V v);
}
// factory for objects with an unparameterized constructor
// objects using this factory don’t need to implement ISettable
class GenericFactory<T> where T : new()
{
public T Create()
{
return new T();

}
}
// factory for creating objects that have a constructor with one parameter
class GenericFactory1<T, U> where T : ISettable<U>, new()
{
// create makes a new T with parameter U and returns T
public T Create(U u)
{
T t = new T();
t.SetParameter(u); // T must implement ISettable, so it has SetParameter()
return t;

}
}
// see the CD for a factory that creates 2-param object

}

The GenericInterface example really just creates the following two generic
classes:

� A factory to create objects that have only a default, parameterless con-
structor — Paramless Objects, I’ll call them.

� A factory that creates objects whose constructor takes one parameter —
OneParam Objects. You can easily extend the approach to handle objects
whose constructors take any number of parameters. The code on the CD
includes a TwoParam example.

361Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 361

Creating objects generically — is it magic?
Creating any Paramless Object is easy — you have no arguments to worry
about (except for <T>, the type parameter):

// in GenericFactory<T>, here’s the Create() method:
public T Create()
{
return new T(); // invokes parameterless constructor

}

The generic interface comes into play because of a limitation of generic con-
straints (discussed in the section “Classy Generics: Creating Your Own,” ear-
lier in this chapter). The following generic class headings review some of the
ways you can constrain a type parameter:

class MyClass<T>: where T: MyBase // T must be or subclass MyBase
class MyClass<T>: where T: IMyInterface // T must implement IMyInterface
class MyClass<T>: where T: class // T can only be a reference type
class MyClass<T>: where T: struct // T can only be a value-type
class MyClass<T>: where T: new() // T must have a parameterless constructor

It’s that last constraint that limits your ability to write powerful generic facto-
ries more easily. It requires that T have a default — that is, parameterless —
constructor. It may have other constructors as well, but one must be parame-
terless, whether you write it or C# does so by default.

The new() constraint is a requirement for any generic class or method that
wants to create objects of type T. But new() has no counterparts new(U) or
new(U, V) for constructors that take parameters.

Generic interfaces can have type constraints, too:

interface ISettable<T> : where T: new() ...

Groping toward a generic solution
The question is what to do when a constructor needs a parameter. The
OneParam Object factory, GenericFactory1<T, U>, has to use code like
this in its Create() method:

public T Create(U u) // u is an argument we want to pass
// to the constructor

{
T t = new T(); // but new T() can’t take arguments
... // now what?

As a result, these approaches fail:

T t = new T(u); // doesn’t work
// or
T t = new T(U); // doesn’t work

362 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 362

Still, you do want to pass the u argument to the new object (which needs to
set a data member with it). How do you do this? As it stands, there’s no way.

Making an end run around the default constructor
The problem just described is where the generic interface comes in. To allow
the factory to supply a parameter to a new object, you have to put some
requirements on the object being manufactured. It must implement some-
thing like this ISettable<U> interface:

interface ISettable<U>
{
void SetParameter(U u);

}

You declare the OneParam Object factory like this:

// T is the type to create; U is the parameter type the constructor needs
class GenericFactory1<T, U> where T: ISettable<U>, new() { }

Any T that this factory makes had better implement ISettable<U> with an
instantiation that replaces U with a real type, such as string.

Coming at last to an example . . .
If you want to make Student objects with the factory, and the Student con-
structor requires one parameter — a string for the student’s name, say —
class Student needs to do this:

class Student: ISettable<string> // instantiate the interface for string
{
private string name;
public Student() {} // also requires a parameterless constructor
public Student(string name) // define a one-parameter constructor
{
SetParameter(name);

}
public void SetParameter(string name) // implement ISettable<string>
{
this.name = name;

}
// other Student methods and data members
...
}

You can still create a Student the old-fashioned way, with new:

students[0] = new Student(“Juan Valdez”);

363Chapter 15: Asking Your Pharmacist about Generics

23_597043 ch15.qxd 9/20/05 2:19 PM Page 363

But to use the factory, you need a GenericFactory1<T, U> object, as follows:

GenericFactory1<Student, string> fact1 = // instantiate T with Student
new GenericFactory1<Student, string>(); // and U with string

You also need a call to the factory’s Create() method to get an object with
its name parameter already set:

students[1] = fact1.Create(“Richard Corey”); // here’s the string argument

Inside the GenericFactory1<T, U>.Create() method, here’s what happens:

public T Create(U u)
{
T t = new T(); // same as before, no constructor parameters allowed
t.SetParameter(u); // use the method provided by T implementing ISettable
return t;

}

Because Create() can only create a parameterless object, you use T’s
SetParameter() method to pass the u parameter to the t object. Then you
can return a Student object whose name member has been set — just like
calling Student’s one-parameter constructor directly. You know T has a
SetParameter() method because of the constraint on the Student class:
: ISettable<string>. That interface guarantees that Student has
SetParameter().

Assessing the damage
How “good” is this solution? Well, it’s not the prettiest thing you’ll ever see. In
fact, it’s kind of a kludge (an old engineering term for solutions involving gum
and bailing wire — euphemism: “workaround”). But it works!

Encountering a series of unfortunate ISettables
What about TwoParam Objects? Or Three or Four? Sadly, ISettable<U>
is only for one-parameter construction. For two parameters, you would
need to add an ISettable2<U, V> interface. For three, you would need
ISettable3<U, V, W>, and so on. Next, you would need a separate factory
type for each of these. But the good news is that constructors hardly ever need
more than five or six parameters — and usually fewer. That’s about how many
ISettable<U, V, ...> interfaces and how many factories you would need.

Of course, a class could implement both ISettable<U> and ISettable2<V,
W> if it wanted to. But it would need a SetParameter(U u) method and a
SetParameter(V v, W w) method. (These can be overloads because the
two SetParameter()s have different parameter signatures.)

364 Part V: Beyond Basic Classes

23_597043 ch15.qxd 9/20/05 2:19 PM Page 364

Part VI
The Part of Tens

24_597043 pt06.qxd 9/20/05 2:20 PM Page 365

In this part . . .

What For Dummies book would be complete without
a Part of Tens? C# is great at finding errors in your

programs when you try to build them — you’ve probably
noticed that. However, the error messages it generates
can be cryptic — you’ve probably noted that, as well.
Chapter 16 reviews the ten most common build-time error
messages and what they most likely mean. Knowledge is
power, so Chapter 16 also suggests fixes for the problems
that are being reported. These items have been updated
to reflect a few changes in C# 2.0.

Many readers will have come to C# through the most
common of all object-oriented languages, C++. Chapter 17
quickly reviews the differences between the two languages,
including the differences between C# generics and C++
templates.

24_597043 pt06.qxd 9/20/05 2:20 PM Page 366

Chapter 16

The 10 Most Common Build Errors
(And How to Fix Them)

In This Chapter
� The name ‘memberName’ does not exist in the class or namespace ‘className’

� Cannot implicitly convert type ‘x’ into ‘y’

� ‘className.memberName’ is inaccessible due to its protection level

� Use of unassigned local variable ‘n’

� Unable to copy the file ‘programName.exe’ to ‘programName.exe.’ The process cannot . . .

� ‘subclassName.methodName’ hides inherited member ‘baseclassName.methodName’.
Use the new keyword if hiding was intended.

� ‘subclassName’ : cannot inherit from sealed class ‘baseclassName’

� ‘className’ does not implement interface member ‘methodName’

� ‘methodName’ : not all code paths return a value

� } expected

C# makes the ol’ college try at finding errors in your C# code. In fact, C#
homes in on syntax errors like a tornado heading for a double-wide.

Other than really stupid mistakes like trying to compile your shopping list,
the same complaints seem to pop up, over and over.

This chapter describes 10 common build-time error messages. A few warn-
ings are in order, however. First, C# can get awfully long-winded. I have whit-
tled down some of the error messages so that the message can fit on one
page, let alone one or two lines. In addition, an error message has places to
insert the name of an errant data member or an obnoxious class. In place of
these specific names, I have inserted variableName, memberName, or
className.

Finally, C# doesn’t simply spit out the name of the class. It prefers to tack on
the full namespace name — just in case the entire error message would have
been visible without scrolling over to your neighbor’s house.

25_597043 ch16.qxd 9/20/05 2:21 PM Page 367

The name ‘memberName’ does not exist in
the class or namespace ‘className’
This error message could mean that you forgot to declare a variable, as in the
following example:

for(index = 0; index < 10; index++)
{
// . . . whatever . . .

}

The variable index is not defined anywhere. (See Chapter 3 for instructions
on declaring variables.) This example should have been written as follows:

for(int index = 0; index < 10; index++)
{
// . . . whatever . . .

}

The same applies to data members of a class. (See Chapter 6.)

A more likely possibility is that you misspelled a variable name. The following
is a good example:

class Student
{
public string sStudentName;
public int nID;

}
class MyClass
{
static public void MyFunction(Student s)
{
Console.WriteLine(“Student name = “ + s.sStudentName);
Console.WriteLine(“Student Id = “ + s.nId);

}
}

The problem here is that MyFunction() references a data member nId
rather than the actual data member nID. Although you see the similarity, C#
does not. The programmer wrote nId, but no nId exists, and that’s all there
is to it. The fact that nID is lurking around the corner, alphabetically speak-
ing, is irrelevant. (The message here is a bit different: ‘class.memberName’
does not contain a definition for ‘variableName’. See Chapter 3
for details.)

368 Part VI: The Part of Tens

25_597043 ch16.qxd 9/20/05 2:21 PM Page 368

Less popular but still way up on the Top 10 playlist is the possibility that the
variable was declared in a different scope, as follows:

class MyClass
{
static public void AverageInput()
{
int nSum = 0;
int nCount = 0;
while(true)
{
// read in a number
string s = Console.ReadLine();
int n = Int32.Parse(s);
// quit when the user enters a negative number
if (n < 0)
{
break;

}
// accumulate the value entered
nSum += n;
nCount++;

}
// now output the results
Console.WriteLine(“The total is “ + nSum);
Console.WriteLine(“The average is “ + nSum / nCount);
// this generates a build time error message
Console.WriteLine(“The terminating value was “ + s);

}
}

The last line in this function is incorrect. The problem is that a variable is lim-
ited to the scope in which it is defined. The variable s is not defined outside
of the while() loop. (See Chapter 5.)

Cannot implicitly convert type ‘x’ into ‘y’
This error usually indicates that you’re trying to use two different variable
types in the same expression — for example:

int nAge = 10;
// generates an error message
int nFactoredAge = 2.0 * nAge;

The problem here is that 2.0 is a variable of type double. The int nAge multi-
plied by the double 2.0 results in a double value. C# does not automatically
store a double into the int variable nFactoredAge because information may
be lost — most notably, any fractional value that the double may possess.

369Chapter 16: The 10 Most Common Build Errors (And How to Fix Them)

25_597043 ch16.qxd 9/20/05 2:21 PM Page 369

Some conversions are not obvious, as in the following example:

class MyClass
{
static public float FloatTimes2(float f)
{
// this generates a build time error
float fResult = 2.0 * f;
return fResult;

}
}

You may think that doubling a float would be okay, but that’s sort of the
problem. 2.0 is not a float — it defaults to type double. A double times a
float is a double. C# does not store a double value back into a float vari-
able due to — you guessed it — possible loss of data; in this case, it is several
digits of accuracy. (See Chapter 3.)

Implicit conversions can further confuse the casual reader (that’s me on a
good day). The following version of FloatTimes2() works just fine:

class MyClass
{
static public float FloatTimes2(float f)
{
// this works fine
float fResult = 2 * f;
return fResult;

}
}

The constant 2 is of type int. An int times a float is a float, which can be
stored in the float variable fResult.

The implicit conversion error message can also arise when performing opera-
tions on “unnatural” types. For example, you cannot add two char variables,
but C# can convert char variables into int values for you when necessary to
get the job done. This leads to the following:

class MyClass
{
static public void SomeFunction()
{
char c1 = ‘a’;
char c2 = ‘b’;
// I don’t know what this even means, but it’s illegal anyway - not for the
// reason you think
char c3 = c1 + c2;

}
}

370 Part VI: The Part of Tens

25_597043 ch16.qxd 9/20/05 2:21 PM Page 370

Adding two characters together makes no sense, but C# tries anyway. Because
addition isn’t defined for type char, it converts c1 and c2 into int values and
then performs the addition. (char is technically listed as an integral type.)
Unfortunately, the resulting int value cannot be converted back into a char
without some help. (See Chapter 3.)

Most, but not all, conversions are okay with an explicit cast. Thus, the follow-
ing function works without complaint:

class MyClass
{
static public float FloatTimes2(float f)
{
// this works OK with the explicit cast
float fResult = (float)(2.0 * f);
return fResult;

}
}

The result of 2.0 * f is still of type double, but the programmer has indi-
cated that she specifically wants the result down-converted to a float, even
in the unlikely event that it results in the loss of data. (See Chapter 3.)

A second approach would be to make sure that all constants are of the same
type, as follows:

class MyClass
{
static public float FloatTimes2(float f)
{
// this works OK because 2.0F is a float constant
float fResult = 2.0F * f;
return fResult;

}
}

This version of the function uses a constant 2.0 of type float rather than the
default double. A float times a float is a float.

‘className.memberName’ is inaccessible
due to its protection level
This error indicates that a function is trying to access a member to which it
does not have access. For example, a method in one class may be trying to
access a private member in another class (see Chapter 11), as shown in the
following code:

371Chapter 16: The 10 Most Common Build Errors (And How to Fix Them)

25_597043 ch16.qxd 9/20/05 2:21 PM Page 371

public class MyClass
{
public void SomeFunction()
{
YourClass uc = new YourClass();
// this doesn’t work properly because MyClass can’t access
// the private member
uc.nPrivateMember = 1;

}
}
public class YourClass
{
private int nPrivateMember = 0;

}

Usually, the error is not so blatant. Often, you’ve simply left the descriptor off
of either the member object or the class itself. By default, a member of a class
is private while a class is internal. Thus, nPrivateMember is still private in
the following example:

class MyClass // undeclared class access level defaults to internal
{
public void SomeFunction()
{
YourClass uc = new YourClass();
// this doesn’t work properly because MyClass can’t access the
// private member
uc.nPrivateMember = 1;

}
}
public class YourClass
{
int nPrivateMember = 0; // this member is still private

}

In addition, even though SomeFunction() is declared public, it still can’t be
accessed from classes in other modules because MyClass itself is internal.

The moral of the story is this: “Always specify the protection level of your
classes and their members.” A lemma is “Don’t declare public members in
a class that itself is internal — it doesn’t do any good and it’s just confusing.”

Use of unassigned local variable ‘n’
Just like it says, this message indicates that you declared a variable but
didn’t give it an initial value. This is usually an oversight, but it can occur
when you really meant to pass a variable as an out argument to a function, as
shown in the following example:

372 Part VI: The Part of Tens

25_597043 ch16.qxd 9/20/05 2:21 PM Page 372

public class MyClass
{
public void SomeFunction()
{
int n;
// this is OK because C# only returns a value in n; it does not
// pass a value into the function
SomeOtherFunction(out n);

}
public void SomeOtherFunction(out int n)
{
n = 1;

}
}

In this case, n is not assigned a value inside of SomeFunction(), but it is in
SomeOtherFunction(). SomeOtherFunction() ignores the value of an out
argument as if it didn’t exist — which it doesn’t in this case. (Chapter 3
covers variables. Chapter 7 explains out.)

Unable to copy the file ‘programName.exe’
to ‘programName.exe’. The process
cannot . . .
Usually, this message repeats multiple times. In almost every case, it means
you forgot to terminate the program before you rebuilt it. In other words, you
did the following:

1. You successfully built your program. (I assume that it’s a console appli-
cation, although it can happen to any C# output.)

2. When you ran the program by choosing Debug➪Start Without
Debugging, you got to the message Press Enter to terminate, but in
your haste, you didn’t press Enter. So, your program is still executing.
Instead, you switched back to Visual Studio 2005 to edit the file.

Note: If you run the program by choosing Debug➪Start Debugging and
forget to terminate, you’re simply asked whether you want to stop
debugging.

3. You tried to build the program again with the new updates. At this point,
you get this error message in the Error List window.

An executable (.EXE) file is locked by Windows until the program actually
quits. Visual Studio cannot overwrite the old .EXE file with the new version
until the program terminates.

373Chapter 16: The 10 Most Common Build Errors (And How to Fix Them)

25_597043 ch16.qxd 9/20/05 2:21 PM Page 373

To get rid of the error, switch to the application and terminate it. In the case
of a console application, just press Enter to terminate the program. You can
also terminate the program from within Visual Studio 2005 by choosing
Debug➪Stop Debugging. After the older program has terminated, rebuild the
application.

If you can’t get rid of the error by terminating the program, the directory may
be messed up. Close the solution, exit Visual Studio 2005, reboot, and then
reopen the solution. If that doesn’t work, I’m sorry — punt.

‘subclassName.methodName’ hides
inherited member ‘baseclassName.
methodName’. Use the new keyword
if hiding was intended
With this message, C# is telling you that you’ve overloaded a method in a
base class without overriding it. (See Chapter 13 for details.) Consider the
following example:

public class BaseClass
{
public void Function()
{
}

}
public class SubClass : BaseClass
{
public void Function() // here’s the overload
{
}

}
public class MyClass
{
public void Test()
{
SubClass sb = new SubClass();
sb.Function();

}
}

374 Part VI: The Part of Tens

25_597043 ch16.qxd 9/20/05 2:21 PM Page 374

The function Test() cannot get at the method BaseClass.Function() from
the subclass object sb because it is hidden by SubClass.Function(). You
intended to do one of the following:

� You intended to hide the base class method. In that case, add the new
keyword to the SubClass definition, as in the following example:

public class SubClass : BaseClass
{
new public void Function()
{
}

}

� You meant to inherit the base class polymorphically, in which case you
should have declared the two classes as follows:

public class BaseClass
{
public virtual void Function()
{
}

}

public class SubClass : BaseClass
{
public override void Function()
{
}

}

See Chapter 13 for details.

This is not an error — just a warning in the Error List window.

‘subclassName’ : cannot inherit from
sealed class ‘baseclassName’
This message indicates that someone has sealed the class, so you can’t
inherit from it or change any of its properties. Typically, only library classes
are sealed. You can’t get around your inability to inherit from the sealed
class, but try using the class via a HAS_A relationship. (See Chapter 13.)

375Chapter 16: The 10 Most Common Build Errors (And How to Fix Them)

25_597043 ch16.qxd 9/20/05 2:21 PM Page 375

‘className’ does not implement interface
member ‘methodName’
Implementing an interface represents a promise to provide a definition for all
the methods of that interface. This message says that you broke that promise
by not implementing the named method. The following possible reasons exist:

� Your dog ate your homework. Basically, you just forgot or were unaware
of the method. Be more careful next time.

� You misspelled the method or gave the wrong arguments.

Consider the following example:

interface Me
{
void aFunction(float f);

}
public class MyClass : Me
{
public void aFunction(double d)
{
}

}

The class MyClass does not implement the interface function aFunction
(float). The function aFunction(double) doesn’t count because the argu-
ments don’t match.

Go back to the drawing board and continue implementing methods until the
interface has been completely fulfilled. (See Chapter 14.)

Not fully implementing an interface is essentially the same thing as trying to
create a concrete class from an abstract one without overriding all the
abstract methods.

‘methodName’ : not all code paths
return a value
With this message, C# is telling you that your method was declared nonvoid
and one or more paths don’t return anything. This can happen in either of the
following two ways:

� You have an if statement that has a return without a value specified.

� More likely, you calculated a value and never returned it.

376 Part VI: The Part of Tens

25_597043 ch16.qxd 9/20/05 2:21 PM Page 376

Both of these possibilities are demonstrated in the following class:

public class MyClass
{
public string ConvertToString(int n)
{
// convert the int n into a string s
string s = n.ToString();

}
public string ConvertPositiveNumbers(int n)
{
// only positive numbers are valid for conversion
if (n > 0)
{
string s = n.ToString();
return s;

}
Console.WriteLine(“the argument {0} is invalid”, n);
// need another return here

}
}

ConvertToString() calculates a string to return but never returns it. Just
add a return s; at the bottom of the method.

ConvertPositiveNumbers() returns the string version of the int argument
n when n is positive. In addition, it correctly generates an error message when
n is not positive. But even if n is not positive, the function still has to return
something. Return either a null or an empty string “” in these cases — which
one works best depends on the application. (See Chapter 7.)

} expected
This error indicates that C# was expecting another close brace when the
program listing just stopped. Somewhere along the way, you forgot to close
a class definition, a function, or an if block. Go back through the listing,
matching the open and closed braces, until you find the culprit.

This error message is often the last in a series of often-nonsensical error
messages. Don’t worry about addressing the other error messages until
you’ve fixed this one. Also, Visual Studio 2005 helps you match parentheses
and braces.

377Chapter 16: The 10 Most Common Build Errors (And How to Fix Them)

25_597043 ch16.qxd 9/20/05 2:21 PM Page 377

378 Part VI: The Part of Tens

25_597043 ch16.qxd 9/20/05 2:21 PM Page 378

Chapter 17

The 10 Most Significant
Differences between C# and C++

In This Chapter
� No global data or functions
� All objects are allocated off of the heap
� Pointer variables are all but disallowed
� C# generics are like C++ templates — or are they?
� I’ll never include a file again
� Don’t construct — initialize
� Define your variable types well
� No multiple inheriting
� Projecting a good interface
� The unified type system

The C# language is more than a little bit based on the C++ programming
language. This is hardly surprising because Microsoft built Visual C++,

the most successful hard-core programming language for the Windows envi-
ronment. All of your best geeks were working in Visual C++. But C++ has been
showing its age for a while now.

However, C# is not just a coat of paint over a rusty language. C# offers numer-
ous improvements, both by adding features and by replacing good features
with better ones. This chapter focuses on the Top Ten best improvements. Of
course, I could easily make this the Top 20.

You may have arrived at C# from a different direction, such as Java or Visual
Basic. C# bears an even stronger resemblance to Java than to C++ — not
surprising, because Java also arose partly to improve on C++ and is highly
Internet oriented. You find syntactic differences, but C# and Java almost feel
like clones. If you can read one, you can read the other.

As for Visual Basic — that is, Visual Basic .NET, not the older Visual Basic 6.0 —
its syntax is completely different, of course, but Visual Basic .NET rests on
the same .NET Framework infrastructure as C#, produces almost identical
Common Intermediate Language code, and is highly interoperable with C#:

26_597043 ch17.qxd 9/20/05 2:22 PM Page 379

A C# class can inherit from a Visual Basic class and vice versa, and your pro-
gram can be a mixture of C# and Visual Basic modules (and, for that matter,
“managed” C++ and J# and . . .).

No Global Data or Functions
C++ passes itself off as an object-oriented language, and it is, in the sense that
you can program in an object-oriented fashion using C++. You can also side-
step class objects by just throwing data and functions out there in some
global space, open to the elements and any programmer with a keyboard.

C# makes its programmers declare their allegiance: All functions and all data
members must join a class. You want to access that function or data? You
have to go through the author of that class — no exceptions.

All Objects Are Allocated Off the Heap
C/C++ allows memory to be allocated in the following ways, each with its own
disadvantages:

� Global objects exist throughout the life of the program. A program can
easily allocate multiple pointers to the same global object. Change one,
and they all change, whether they’re ready or not. A pointer is a variable
that contains the address of some distant chunk of memory. Technically,
C# references are pointers under the hood.

� Stack objects are unique to individual functions (that’s good), but they
are deallocated when the function returns. Any pointer to a deallo-
cated memory object becomes invalid. That would be fine if anyone told
the pointer; however, the pointer still thinks it’s pointing to a valid
object, and so does its programmer. The C++ stack is a different region of
memory from the heap, and it really is a stack.

� Heap objects are allocated as needed. These objects are unique to a
particular execution thread.

The problem is that it’s too easy to forget what type of memory a pointer
refers to. Heap objects must be returned when you’re done with them. Forget
to do so, and your program progressively “leaks” memory until it can no
longer function. On the other hand, if you release the same block of heap
more than once and “return” a block of global or stack memory, your pro-
gram is headed for a long nap — maybe Ctrl+Alt+Del can wake it up.

C# solves this problem by allocating all objects off of the heap. Even better
than that, C# uses garbage collection to return memory to the heap for you.
No more blue screen of death haunts you because you sent the wrong
memory block to the heap.

380 Part VI: The Part of Tens

26_597043 ch17.qxd 9/20/05 2:22 PM Page 380

Pointer Variables Are All but Disallowed
The introduction of pointers to C ensured the success of that language.
Pointer manipulation was a powerful feature. Old-hand machine-language
programmers could still pull the programming shenanigans they were used
to. C++ retained the pointer and heap features from C without modification.

Unfortunately, neither the programmer nor the program can differentiate a
good pointer from a bad one. Read memory from an uninitialized pointer, and
your program crashes — if you’re lucky. If you’re not lucky, the program cranks
right along, treating some random block of memory as if it were a valid object.

Pointer problems are often difficult to pin down. An invalid pointer program
usually reacts differently every time you run it.

Fortunately for all concerned, C# manages to sidestep pointer problems by
doing away with them. The references that it uses instead are type-safe and
cannot be manipulated by the user into something that can kill the program.

C# Generics Are Like C++ Templates —
or Are They?

If you look at C#’s new generics feature (see Chapter 15) beside C++’s tem-
plate feature, the syntax looks very similar. However, although the two have
the same basic purpose, their resemblance is only skin deep.

Both generics and templates are type-safe, but under the hood they are
implemented very differently. Templates are instantiated at compile time,
while generic instantiation happens at run time. This means the same tem-
plate in two different .NET assemblies results in two separate types that get
instantiated at compile time. But the same generic in two different .NET
assemblies results in only one type that gets instantiated at run time. The up
side of this is less “code bloat” for generics than for templates.

The biggest difference between generics and templates is that generics work
across multiple languages, including Visual Basic, C++, and other .NET lan-
guages, as well as C#. Templates are purely a C++ feature.

Which one is better? Templates are more powerful — and complex, like a lot
of things in C++ — but a great deal more error-prone — again, like a lot of
things in C++. Generics are thus easier to use and less likely to result in a
bullet to your big toe.

381Chapter 17: The 10 Most Significant Differences between C# and C++

26_597043 ch17.qxd 9/20/05 2:22 PM Page 381

Of course, I’m only scratching the surface of this discussion here. For a much
more technical comparison, see Brandon Bray’s blog at weblogs.asp.net/
branbray/archive/2003/11/19/51023.aspx.

I’ll Never Include a File Again
C++ enforces strict type checking — that’s a good thing. It does so by com-
pelling you to declare your functions and classes in so-called include files,
which are then used by modules. However, getting all the include files set up
in just the right order for your module to compile can get complicated.

C# does away with that nonsense. Instead, C# searches out and finds the
class definitions on its own. If you invoke a Student class, C# finds the class
definition on its own to make sure that you’re using it properly.

Don’t Construct — Initialize
I could see the usefulness of constructors the first time I laid eyes on them.
Provide a special function to make sure that all the data members were set
up correctly? What an idea! The only problem is that I ended up adding trivial
constructors for every class I wrote. Consider the following example:

public class Account
{
private double balance;
private int numChecksProcessed;
private CheckBook checkBook;
public Account()
{
balance = 0.0;
numChecksProcessed = 0;
checkBook = new CheckBook();

}
}

Why can’t I just initialize the data members directly and let the language gener-
ate the constructor for me? C++ asked why; C# answers why not? C# does away
with unnecessary constructors by allowing direct initialization, as follows:

public class Account
{
private double balance = 0.0;
private int numChecksProcessed = 0;
private CheckBook checkBook = new CheckBook();
// no need to do this again in a constructor

}

382 Part VI: The Part of Tens

26_597043 ch17.qxd 9/20/05 2:22 PM Page 382

More than that, if all you need is the appropriate version of zero for a particu-
lar type, as in the first two data members above, C# takes care of it for you
automatically, at least for class data members. If you want something other
than zero, add your own initialization right at the data member’s declaration.
(Always initialize local variables inside functions, however.)

Define Your Variable Types Well
C++ is very politically correct. It doesn’t want to step on any computer’s toes
by requiring that a particular type of variable be limited to any particular range
of values. It specifies that an int is about “so big” and a long is “bigger.” This
indecisiveness leads to obscure errors when trying to move a program from
one type of processor to another.

C# doesn’t beat around the bush. It says, an int is 32 bits and a long is 64
bits, and that’s the way it’s going to be. As a programmer, you can take that
information to the bank without unexpected errors popping up.

No Multiple Inheriting
C++ allows a single class to inherit from more than one base class. For exam-
ple, a SleeperSofa can inherit from both class Bed and class Sofa. (But did
you ever try to sleep on one of those furniture hybrids with a torture rack
just under the thin mattress?) Inheriting from both classes sounds really
neat, and in fact, it can be very useful. The only problem is that inheriting
from multiple base classes can cause some of the most difficult-to-find pro-
gramming problems in the business.

C# drops back and avoids the increased number of errors by taking multiple
inheritance away. However, that wouldn’t have been possible had C# not
replaced multiple inheritance with a new feature: the interface, discussed in
the next section.

Projecting a Good Interface
When people stepped back and looked at the multiple inheritance nightmare
that they had gotten themselves into, they realized that over 90 percent of the
time, the second base class existed merely to describe the subclass. For exam-
ple, a perfectly ordinary class might inherit an abstract class Persistable
with abstract methods read() and write(). This forced the subclass to
implement the read() and write() methods and told the rest of the world
that those methods were available for use.

383Chapter 17: The 10 Most Significant Differences between C# and C++

26_597043 ch17.qxd 9/20/05 2:22 PM Page 383

Programmers then realized that the more-lightweight interface could do the
same thing. A class that implements an interface like the following example is
promising that it provides the read() and write() capability:

interface IPersistable
{
void read();
void write();

}

You avoid the hazards of true C++-style multiple inheritance while still reap-
ing the same basic design benefits.

Unified Type System
The C++ class is a nice feature. It allows data and its associated functions to
be bundled into neat little packages that just happen to mimic the way that
people think of things in the world. The only problem is that any language
must provide room for simple variable types like integer and floating point
numbers. This need resulted in a caste system. Class objects lived on one
side of the tracks, while value-type variables like int and float lived on the
other. Sure, value types and object types were allowed to play in the same
program, but the programmer had to keep them separate in his mind.

C# breaks down the Berlin Wall that divides value types from object types. For
every value type, there is a corresponding “value type class” called a structure.
(You can write your own custom structure types too. See Chapter 14.) These
low-cost structures can mix freely with class objects, enabling the program-
mer to make statements like the following:

MyClass myObject = new MyClass();
Console.WriteLine(myObject.ToString());// display a “myObject” in string format
int i = 5;
Console.WriteLine(i.ToString()); // display an int in string format
Console.WriteLine(5.ToString()); // display the constant 5 in string format

Not only can I invoke the same method on int as I do on a MyClass object,
but I can also do it to a constant like 5. This scandalous mixing of variable
types is a powerful feature of C#.

384 Part VI: The Part of Tens

26_597043 ch17.qxd 9/20/05 2:22 PM Page 384

Appendix

About the CD
In This Appendix
� System requirements

� Using the CD with Windows

� What you’ll find on the CD

� Troubleshooting

The CD-ROM that comes tucked away inside the back cover of C# 2005 For
Dummies contains lots of goodies. First, you’ll find the source code from

the numerous program examples you find throughout the book. In addition,
I’ve included five bonus chapters and three utility programs that can make
your life as a programmer easier. However, your machine must meet a few
minimum system requirements before you can make use of them.

System Requirements
Parts of this book assume that you have Microsoft Visual Studio 2005 or
Microsoft Visual C# 2005, which is the preferred way to program with C#.
However, if you don’t, you can use the free, open-source SharpDevelop pro-
gram provided on the CD to build and run the book’s examples. See Bonus
Chapter 5 on the CD for information about SharpDevelop and about other ways
you can use this book cheaply. Visual Studio is not supplied with this book.

If you’re using Visual Studio, the hardware requirements for using the CD that
comes with this book are the same as those for Visual Studio. Refer to the
Visual Studio System Requirements for details. Make sure that your computer
meets these minimum system requirements:

� A PC with a 600 MHz Pentium or faster processor, 1 GHz recommended

� Microsoft Windows XP, Service Pack 2 (Home or Professional); Windows
2000, Service Pack 4; or Windows 2003 Server

� At least 128MB of total RAM installed on your computer; for best perfor-
mance, I recommend at least 256MB. Visual Studio has a large appetite
for memory.

27_597043 app.qxd 9/20/05 2:24 PM Page 385

� At least 1MB of hard drive space, without installing MSDN documenta-
tion to the hard drive, about 2MB if you do install the documentation (if
not, you can use it from the Visual Studio CD), plus about 2MB if you
install the book’s example programs

� A CD-ROM drive

� A monitor capable of displaying at least 256 colors at 800 x 600 resolu-
tion or better

If your computer doesn’t match up to most of these requirements, you may
have problems using the software and files on the CD. For the latest and
greatest information, please refer to the ReadMe file located at the root of
the CD-ROM.

If you need more information on the basics, check out these books published
by Wiley Publishing, Inc.: PCs For Dummies, by Dan Gookin; Windows 2000
Professional For Dummies and Windows XP For Dummies, 2nd Edition, both by
Andy Rathbone; and Windows Server 2003 For Dummies, by Ed Tittel and
James Michael Stewart.

Using the CD
To install the items from the CD to your hard drive, follow these steps:

1. Install Visual Studio 2005 or Visual C# 2005 if you have one of them,
or install SharpDevelop and/or TextPad as described in Step 5.

Follow the installation directions provided by the software vendor.

2. Insert the book’s CD into your computer’s CD-ROM drive. The license
agreement appears.

Note to Windows users: The interface won’t launch if you have autorun
disabled. In that case, choose Start➪Run. In the dialog box that appears,
type D:\start.exe. (Replace D with the proper letter if your CD-ROM
drive uses a different letter. If you don’t know the letter, see how your
CD-ROM drive is listed under My Computer.) Click OK.

3. Read through the license agreement, and then click the Accept button
if you want to use the CD. After you click Accept, the License
Agreement window won’t appear again.

The CD interface appears. The interface allows you to install the pro-
grams with just a click of a button (or two).

386 C# 2005 For Dummies

27_597043 app.qxd 9/20/05 2:24 PM Page 386

4. To make life easiest, install the example programs. You’ll want to refer
to them frequently. Simply click the install button from the Code sec-
tion of the CD-ROM interface.

You could refer to the examples by inserting the CD as needed, but having
the programs on your hard drive is handiest. They take up about 2MB of
disk space.

I provide all the necessary files to let you run the programs right out of
the box. That’s fine, but C# will come easier if you type in the code your-
self, in a fresh Visual Studio project, rather than simply copying the pro-
vided source files.

The programs are in a folder called C:\C#Programs (no space). That
location makes the file paths you see as you work with the files the same
as I describe in the book.

When you create a project and give it a name, Visual Studio (or
SharpDevelop) creates a folder of the same name.

5. Install the bonus software that you want. Just click the button from
the Software menu of the CD-ROM interface to launch the installer
and follow the on-screen prompts.

If you have Visual Studio or Visual C#, you won’t really need
SharpDevelop. But you’ll find TextPad and NUnit useful in any case.
Follow the software vendor’s installation instructions.

What You’ll Find on the CD
The following sections are arranged by category and provide a summary of
the software and other goodies you’ll find on the CD. If you need help with
installing the items provided on the CD, refer to the installation instructions
in the preceding section.

The C# programs
The first thing you’ll find on the CD are the C# source files for the programs
from throughout this book. These source files (with accompanying Visual
Studio project and solution files) are organized into directories by program
name. Each directory contains all the files that go with a single example
program.

387Appendix: About the CD

27_597043 app.qxd 9/20/05 2:24 PM Page 387

All the examples provided in this book are located in the C#Programs direc-
tory on the CD and work with Windows 2000, 2003 Server, XP, and later com-
puters. These files contain much of the sample code from the book. The
structure of the examples directory is

C:\C#Programs\ExampleProgram1
C:\C#Programs\ExampleProgram2
...

Five bonus chapters
The C# 2005 For Dummies CD also includes five bonus chapters that supple-
ment the book’s text.

� Bonus Chapter 1 explains how to do error handling in C# with C#
exceptions.

� Bonus Chapter 2 explains how to read and write files from your C#
programs.

� Bonus Chapter 3 explains several ways to iterate collections of data
objects in C# — step through the objects one by one — including lines
in a text file. The chapter includes the new iterator blocks from C# 2.0.

� Bonus Chapter 4 explains how to use the Visual Studio 2005 interface,
including the debugger and the Help system.

� Bonus Chapter 5 presents several ways to program cheaply in C# with-
out Visual Studio, including the SharpDevelop and TextPad programs
provided on the CD.

The CD also includes three bonus utility programs to help you program in C#.

Shareware programs are fully functional, free, trial versions of copyrighted
programs. If you like particular programs, register with their authors for a
nominal fee and receive licenses, enhanced versions, and technical support.

Freeware programs are free, copyrighted games, applications, and utilities.
You can copy them to as many PCs as you like — for free — but they offer no
technical support.

GNU software is governed by its own license, which is included inside the
folder of the GNU software. There are no restrictions on distribution of GNU
software. See the GNU license at the root of the CD for more details.

Trial, demo, or evaluation versions of software are usually limited either by
time or functionality (such as not letting you save a project after you create it).

388 C# 2005 For Dummies

27_597043 app.qxd 9/20/05 2:24 PM Page 388

NUnit
A program testing tool from www.nunit.org. GNU open-source software. For
Windows (also available for Mono on Unix/Linux/Mac machines, although
that version is not covered in this book).

Use NUnit, the most popular C# unit testing tool, to automate unit tests for
your code. Unit tests test your classes and methods. Bonus Chapter 5 on the
CD explains how to use NUnit.

SharpDevelop
A pretty good Visual Studio imitator from www.icsharpcode.net. GNU open-
source software. For Windows.

Use SharpDevelop, or the next program, TextPad, as your programming envi-
ronment if you don’t have access to Visual Studio 2005 or Visual C# 2005.
Bonus Chapter 5 on the CD explains how to use SharpDevelop, a fairly capa-
ble C# development tool with a strong resemblance to the earlier 2003 ver-
sion of Visual Studio. Although SharpDevelop lacks the newer features added
in Visual Studio 2005, you can use it to program with the latest version of C#,
version 2.0. I don’t recommend it for serious commercial software develop-
ment, but it works fine with all the example programs in this book.

TextPad
A programmer-oriented text editor from www.textpad.com. Shareware trial
version, no trial duration specified. For Windows 95, 98, ME, NT4, 2000,
Server 2003, XP.

If you lack Visual Studio 2005 — and SharpDevelop, described earlier, is not
to your taste — you may want to try using the popular TextPad code editor
as the center of your C# programming. It’s a more rugged environment than
Visual Studio or SharpDevelop, but it’s cheap and surprisingly powerful. In
any case, it’s a far better tool for programmers than Notepad. Bonus Chapter
5 on the CD explains how to configure TextPad for C#.

Troubleshooting
I tried my best to compile programs that work on most computers with the
minimum system requirements. Alas, your computer may differ, and some
programs may not work properly for some reason, or work only slowly.

389Appendix: About the CD

27_597043 app.qxd 9/20/05 2:24 PM Page 389

The most likely problem is that you do not have the Microsoft .NET environ-
ment installed. Programs created in C# require a set of .NET libraries, which
you must have installed on your computer. Some versions of Windows may
now come with these libraries preinstalled. If you have Visual Studio 2005
or Visual C# Express 2005 installed, you definitely have the right libraries.
(Older versions of Visual Studio don’t come with the latest version 2.0 of
the .NET libraries.) Otherwise, you can download or order the libraries from
www.microsoft.com. You want the .NET SDK, version 2.0. Bonus Chapter 5
on the CD discusses in more detail how to obtain them.

Another possible problem is that your computer does not have enough
memory (RAM). If you get an error message such as Not enough memory or
Setup cannot continue, try one or more of the following suggestions and
then try using the software again:

� Turn off any antivirus software running on your computer. Installation
programs sometimes mimic virus activity and may make your computer
incorrectly believe that it’s being infected by a virus. Trust me, it isn’t.

� Close all running programs. The more programs you have running, the
less memory is available to other programs. Installation programs typi-
cally update files and programs; so if you keep other programs running,
installation may not work properly.

� Have your local computer store add more RAM to your computer. This
is, admittedly, a drastic and somewhat expensive step, though not that
expensive nowadays. However, adding more memory can really help
the speed of your computer and allow more programs to run at the
same time.

If you have trouble with the CD-ROM, please call the Wiley Product Technical
Support phone number at (800) 762-2974. Outside the United States, call
1(317) 572-3994. You can also contact Wiley Product Technical Support at
http://www.wiley.com/techsupport. John Wiley & Sons will provide
technical support only for installation and other general quality control
items. For technical support on the applications themselves, consult the
program’s vendor or author. You can also check out a list of common prob-
lems on the Web site of one of the authors at www.chucksphar.com.

To place additional orders or to request information about other Wiley prod-
ucts, please call (877) 762-2974.

390 C# 2005 For Dummies

27_597043 app.qxd 9/20/05 2:24 PM Page 390

Symbols
& (ampersand) operator, 65
&& (double ampersand)

operator, 65–66
* (asterisk)

as arithmetic operator, 57
in Forms Designer

window, 24
\ (backslash), special

characters and, 95
{} (braces)

class name and, 102–103
using for clarity, 72

[] (brackets)
array and, 112
as index operator, CD76

} (close brace) expected
error message, 377

= (equals) sign
as assignment operator,

40, 60–61
reference types and,

107–108
! (exclamation point)

operator, 65
^ (exclusive or—xor)

operator, 65
// (forward slashes), 34
- (minus) sign and code

region, 31
% (modulo) operator, 58,

CD60
| (pipe) operator, 65
|| (double pipe) operator, 66
+ (plus) operator and

strings, 52
+ (plus) sign and code

region, 31
<T> and generic collections

and, 338

/// (three-slash) comment,
181, CD117

~ (tilde), 271

• A •
absolute value function, 64
abstract class

declaring, 319
overview of, 293–294
using, 294–296

abstracting concepts, 135
AbstractInheritance

program, 294–295
AbstractInterface

program, 316–319
abstraction. See also abstract

class
class factoring, 288–293
overview of, 213–215, 288

AcceptButton property, 24
access control

accessor methods,
226–227, 231

containment and, 258–259
DoubleBankAccount

program example,
227–230

importance of, 225–226
overview of, 218–219,

221–224
security, levels of, 224–225

accessing
collection, CD72–CD74
current object, 169–176
member of object, 104–106
project properties, 160–161
static member of class, 110

alignment guides, 22
AlignOutput program,

201–203
Alt+Tab (switch program),

CD129

ampersand, double (&&)
operator, 65–66

ampersand (&) operator, 65
application. See also console

application; specific
programs

action, adding, 25–27
breaking, CD132–CD135
building and running, 18–20
console, creating, 29–31
converting class into,

CD114–CD115
creating, 15
description of, 12
developing, CD142
dividing into multiple

assemblies, CD29–CD30
dividing into multiple

source files, CD28–CD29
executable, 12, 373
executing, 19, 32, 35
Forms Designer and, 20–24
freeware, 388
rebuilding and running,

24–25, 373–374
running on different

machines, CD180
shareware, 388
source files for example,

387–388
template, creating, 15–18
testing, 27–28

Application Wizard, 16, 17,
CD32

approximation error, CD3
argument

auto-complete feature and,
178–179

implementing default,
140–142

matching definitions with
usage, 138–139

Index

28_597043 bindex.qxd 9/20/05 2:25 PM Page 391

argument (continued)
multiple, passing to

function, 136–138
as part of name of function,

274–275
passing from DOS prompt,

155–157
passing from Visual Studio

2005, 159–162
passing from window,

157–159
passing to default base

class constructor,
266–269

passing to function, 136
value-type, passing by

reference, 143–147
value-type, passing by

value, 142–143
arithmetic operators

assignment, 60–61
increment, 61–62
operating orders, 58–59
overview of, 57
simple, 57–58

array
argument for, 112
description of, 101, 111–112
disadvantages of, 334
fixed-value, 112–114
iterating through, 192
Length property, 117
linked list compared to,

CD62
naming, 120
objects and, 118–120
sorting elements within,

122–126
variable-length, 114–118

ArrayList class, 334,
335–336

as operator, 264–265, 337
assembly, CD29–CD30
assigning

expression type, 68–69
multiple catch blocks,

CD15–CD17
assignment of reference, 126
assignment operator (=)

declaring variable and, 40
math functions and, 60–61
reference types and,

107–108

asterisk (*)
as arithmetic operator, 57
in Forms Designer

window, 24
author, Web site of, 8, 390
“auto list members” Help,

CD124–CD125
auto-complete feature

displaying, 26, 27
documentation comments

and, 180–184
overview of, 176–177
System Library and,

177–179
for user-created functions

and methods, 179–180
auto-indenting, 75
AverageAndDisplay()

function, 137–138
AverageAndDisplay

Overloaded program,
139–140

AverageStudentGPA
program, 119–120

AverageWithCompiler
Error program, 138

avoiding
boxing and unboxing, 331
confusion in code, 59, 60
duplication among

constructors, 245–248
else statement, 76–77
goto statement, 98
redundancy, 292
tight coupling, 359

• B •
backslash (\) and special

characters, 95
BankAccount class,

inheriting from, 254–257
BankAccount program,

222–224
BankAccount

ConstructorsAnd
Function program,
245–247

BankAccount
ConstructorsAndThis
program, 247–248

BankAccountWith
Multiple
Constructors
program, 243–245

base class method,
overloading, 275–280,
374–375

base interface, 316
base keyword, 268–269,

280–281
binary operator, 58
bitwise operator, 65
blank line, generating, 106
bonus chapters, 388
bool variable, 49, 64–66
boxing

nongeneric collections and,
336, 337

value-type variable and,
149, 330–331

braces ({})
class name and, 102–103
using for clarity, 72

brackets ([])
array and, 112
as index operator, CD76

break command
looping statements and,

84–86
nested loop and, 93
while loop and, 86–89

breaking
encapsulation, 279
string, 203–205

breakpoint, setting, 238, 239,
CD132–CD135

browsing online help, 177
bubble sort, 123–126
buffer overwrite, CD72
BuildASentence program,

190–192
building Windows Forms

program, 18–20
Button control, 22

• C •
C language, 61
C++ programming language

constructors and, 382–383
global data or functions

and, 380

392 C# 2005 For Dummies

28_597043 bindex.qxd 9/20/05 2:25 PM Page 392

interface and, 383–384
memory allocation and, 380
multiple inheriting and, 383
overview of, 379–380
pointer variables and, 381
template feature, 381–382
type checking and, 382
Unified Type System, 384
variable types and, 383

C# version 2.0
features of, 2
overview of, 12–13
resources on, 7–8, 177, 382

CalculateInterest
program, 73–74

CalculateInterestTable
program, 81–82, 129

CalculateInterestTable
MoreForgiving
program, 86–87

CalculateInterestTable
WithFunctions
program, 130–132

CalculateInterestWith
EmbeddedTest
program, 77–78

calculating
interest, 73
type of operation, 67–68

call by reference feature,
147, 148–149

Call Stack window,
CD135–CD136

calling initialization
function, 233

CAN_BE_USED_AS
relationship

overview of, 303–305
program example of,

307–316
Cannot implicitly convert

type ‘x’ into ‘y’ error
message, 369–371

cast
as operator and, 264–265
description of, 56
invalid, 262–263
protecting with is

operator, 263
cast operator, 68, 69
catch blocks, assigning

multiple, CD15–CD17

CD-ROM
contents of, 385, 387–389
description of, 6
installing items to hard

drive from, 386–387
system requirements for,

385–386
temperature conversion

program, 44, 46
troubleshooting, 389–390

chaining assignments, 60
changing type of variable,

55–56
chapters, bonus, 388
char variable, 50–51, 53
character

adding to or removing from
end of string, 201–203

escaping, 95
newline, 106
parsing out of string,

194–196
replacing one with another,

203–205
character types, 50–52
class. See also Priority

Queue class
abstract, 293–296, 319
access control and, 219,

221–224
adding, CD110–CD111
ArrayList, 334, 335–336
BankAccount, inheriting

from, 254–257
collection, writing own,

CD61–CD71
concrete, 295
Console, 160
const data member, 111
containing another class,

108–109
converting into program,

CD114–CD115
CustomException, CD14
declaring abstract, 319
defining, 102–103
description of, 101, 102, 233
Dictionary, 335
Exception, creating own,

CD13–CD15
Exception, overriding,

CD22–CD26

factoring, 288–293, CD118
FileStream, CD43–CD44
functions and, 163
generic, methods in,

353–355
hierarchy of inherited, 266
hierarchy, restarting,

296–299
implementation of interface

and, 305
inheritance and, 252–253
instantiating locally, 249
internal changes to, 230
internal member of, 225
internal protected

member of, 225
LinkedList, 334
methods and, 163
name of, 102–103
namespace and,

CD33–CD35
nongeneric collection,

334–336
non-static member of, 128
Object, 327, 328, 330
object, 264
of object, changing, 261–262
object of, 103–104
as part of name of function,

274–275
partial, CD177–CD178
protected member of, 225
public member of,

221–224, 225
Queue, 334
as responsible for itself, 279
sealing, 300, 375
Simple Factory, 358–359
Stack, 335
static member of, 110
StreamReader,

CD50–CD54
StreamWriter,

CD45–CD50
String, 187
structure compared to, 327
wrapper, 342

class constructor, 235–236
class function, 128
class inheritance, 219
class library, CD27, CD29,

CD39–CD43

393Index

28_597043 bindex.qxd 9/20/05 2:25 PM Page 393

class method, 168
class property, 110, 231–232,

CD91
Class View, CD110
classification, 215–217
ClassLibrary program,

CD40–CD41
‘className’ does not

implement interface
member ‘methodName’
error message, 376

‘className.memberName’ is
inaccessible due to it’s
protection level error
message, 371–372

Click event, setting, 25–26
close brace (}) expected

error message, 377
closed window, CD100
closing program, 20
CLR (Common Language

Runtime), 3
code

navigating, CD110
testing on different

machines, CD180
for Windows forms, writing,

CD175–CD179
writing, CD115–CD119

code region, 31
Code Snippets feature, 34–35
Code view, 25
collection. See also generic

collections
as alternative to array, 117
description of, CD86–CD87
directory of files, iterating

through, CD55–CD61
index feature for,

CD76–CD80
iterating, CD72–CD75
nongeneric, 334–336

collection class, writing own,
CD61–CD71

commands
break, 84–89, 93
Console.Write(), 330
continue, 84–86
Readline(), 74
ToDecimal(), 74
WriteLine(), 74, 160

comments
documentation comments,

180–184
reading, 129
using, 34, CD117

Common Language Runtime
(CLR), 3

Community menu, CD124
Compare() method, 189–193
comparing floating point

numbers, 47, 63–64
compiler error, 336–337
composing, 259
compound assignment

operators, 61
compound logical operators,

64–66
computational speed with

decimal variables, 49
Concat() method, 204–205
concept

class and, 102
function and, 135

concrete class, 295
console application

comments in, 34
core of, 34–35
dropping file onto,

157, 158–159
editing template file, 32–33
executing by double-

clicking, 157–158
framework for, 33
I/O and, CD43
overview of, 29
template, creating, 29–31
testing, 31

Console class, 160
Console.Write()

command, 330
Console.WriteLine

statement, 34–35
const data member, 111
constant

declaring, 79, 111
numeric, declaring, 54–55
string constant, 189
writing, CD6

constraint
generic method and, 356
PriorityQueue() class

and, 351–352
of type parameter, 362

constructor
avoiding duplication

among, 245–248
C++ and, 382–383
C#-provided, 233–234
default, 235–237
default base class, invoking,

265–266
default, initializing object

directly and, 241–242
default, passing arguments

to, 266–269
default, program example,

236–237
DemonstrateDefault

Constructor program,
236–237

description of, 233, 234
executing from debugger,

238–241
initializing object directly

and, 241–242
overloading, 243–245
parameters for, 362–364

ConstructorSavings
Account program,
269–271

containers
iterating through, 120–121
linked list, CD61–CD71

containment, 258–259
continue command, 84–86
control window, 21
controlling output manually
Format() method, 206–210
overview of, 200–201
Trim() and Pad()

methods, 201–203
controlling program flow
for loop, 90–92
foreach statement,

120–121
goto statement, 98
if statement, 72–79
nested loops, 92–95
switch control, 96–98
while loop, 80–90

controls
events and, 25–27
properties of, 23–24
putting on form with code

only, CD178–CD179
working with, 21–22

394 C# 2005 For Dummies

28_597043 bindex.qxd 9/20/05 2:25 PM Page 394

Convert class, 196, 198
converting variable type,

55–56
counting

decimal variable and, 49
floating point variable

and, 46
counting variable

in for loop, 92
incrementing in while

loop, 83–84
CPU processor fault, 153
Ctrl+C (interrupt running

program), CD56
Ctrl+F5 (Start Without

Debugging), 159
Ctrl+K then Ctrl+X (view

menu of snippets), 34
Ctrl-Space (display auto-

complete), 26
current object, accessing

overview of, 169–171
this keyword and, 171–176

CustomException class,
CD14

CustomException program,
CD23–CD26

• D •
data member, initializing, 172
data, storing, 101
data structure, CD61
Debug→Delete All

Breakpoints, CD134
debugger

executing constructor from,
238–241

SharpDevelop and,
CD146–CD149

debugging tools
breakpoint, setting,

CD132–CD135
overview of, CD126
single stepping,

CD128–CD131
stack trace, CD135–CD136

Debug→Start Debugging, 159
Debug→Start Without

Debugging, 19, 159
Debug→Step Into, 238
Debug→Step Over, CD128

Debug→Windows→
Breakpoints, CD134

Debug→Windows→Call
Stack, CD135

decimal variable, 48–49
DecimalBankAccount

program, 228–230
Decimal.Round() method,

228–230
decimal.Round()

statement, 83
decision-making. See

controlling program flow
declaration, 41
declared type, 283–284
declaring
bool variable, 49
class abstract, 319
constant, 79, 111
decimal variable, 48
floating point variable,

45–46
namespace, CD31–CD32
numeric constant, 54–55
variable, 40, 42, 319–320,

368, 369
decrement operator, 62
default constructor

initializing object directly
and, 241–242

invoking, 265–266
overview of, 235–236
passing arguments to,

266–269
program example, 236–237

default location for folder,
changing, 18

defining
class, 102–103
class properties, 231–232
function with no value,

152–153
method, 167–169
static member function,

165–167
variable type, 383

delegating, 259
DemonstrateDefault

Constructor program,
236–237

demotion, 67–68
dependency, 359

Dequeue() method, 342, 350
destructor, 271–272
Dictionary class, 335
directory

of files, iterating through,
CD55–CD61

naming, 156
discriminating between

objects, 106–107
DisplayArguments

program, 153–154
displaying

auto-complete, 26
line numbers,

CD135–CD136, CD137
project, CD108–CD110
zero, trailing, 83

DisplayRatio() function,
152–153

DisplayRounded
Decimal() function, 141

DisplayWithNestedLoops
program, 93–94

distributed development, 13
dividing program

into multiple assemblies,
CD29–CD30

into multiple source files,
CD28–CD29

.DLL file extension, CD29
docked window, CD102
Document Explorer, CD119
document window, 21
documentation comments,

180–184
DOS command line

executing program from, 32
passing argument from,

155–157
DOS window, opening, 33
dot operator, 107–108
DotGNU Portable .NET

implementation, 1
double ampersand (&&)

operator, 65–66
double pipe (||) operator, 66
double variable, 45
DoubleBankAccount

program, 227–230
do...while loop, 84
down conversion, 68

395Index

28_597043 bindex.qxd 9/20/05 2:25 PM Page 395

driver for project, creating,
CD41–CD43

dropping file onto console
program, 157, 158–159

duplication among
constructors, avoiding,
245–248

Dynamic Help window,
CD124

• E •
early binding, 283
elegance in software, 261
else statement, 75–77
embedded statement, 77
empty string, 52, 150
enabling Treat Warnings as

Errors, 279
encapsulation, 279, 342. See

also access control
Enqueue() method, 342,

349–350
enumerated type, 346
enumerator for linked list,

implementing,
CD69–CD71

equals (=) sign
as assignment operator, 40
reference types and,

107–108
error. See also run-time error

approximation, CD3
compiler, 336–337
rethrowing, CD20–CD21
returning, CD1–3, CD7–8

error message
Cannot implicitly convert

type ‘x’ into ‘y,’ 369–371
‘className’ does not imple-

ment interface member
‘methodName,’ 376

‘className.memberName’
is inaccessible due to it’s
protection level, 371–372

} (close brace) expected,
377

fixed-value array and, 113
‘methodName’: not all code

paths return a value,
376–377

The name ‘memberName’
does not exist in the
class or namespace
‘className,’ 368–369

overview of, 367
‘subclassName’: cannot

inherit from sealed class
‘baseclassName,’ 375

‘subclassName.method
Name’ hides inherited
member
‘baseclassName.method
Name.’ Use the new
keyword if hiding was
intended, 374–375

for two methods with
identical name, 279

Unable to copy the file
‘programName.exe’ to
‘programName.exe.’ The
process cannot...,
373–374

Use of unassigned local
variable ‘n,’ 372–373

escaping character, 95
event, 25–27
exception

description of, 196
responding to, CD21–CD22
throwing, CD17–CD19

Exception class
creating own, CD13–CD15
overriding, CD22–CD26

exception mechanism
example of, CD10–CD13
overview of, CD9–CD10

exclamation point (!)
operator, 65

exclusive or—xor (^)
operator, 65

executable program, 12, 373,
CD29

executable statement, CD128
executing

console program by double-
clicking, 157–158

constructor from debugger,
238–241

program, 19, 32, 35
Visual Studio, 16

explicit type conversion, 68

expression type
assigning, 68–69
calculating, 67–68
matching, 66

eXtensible Markup Language
(XML),180–185

external method, 224

• F •
FactorialErrorReturn

program, CD4–CD7
FactorialException

program, CD11–CD13
FactorialWithError

program, CD2–CD3
factoring, 288–293, CD118
factory

generic, building, 359–364
overview of, 348, 358–359

F11 (Step Into), 238, CD130
F5 (Start Debugging), 159
file

include, 382
naming, 156
project, CD29, CD107
searching for, 155–156
source, 12, 387–388,

CD28–CD29, CD30–CD38
file access, CD27
file extension
.cs, 12, 16
.DLL, CD29
.exe, 12, 383

File→New→Project, 16
FileRead program,

CD50–CD54
FileStream class,

CD43–CD44
FileWrite program,

CD45–CD50
FixedArrayAverage

program, 113, 114
fixed-length variable type, 52
fixed-value array, 112–114,

117–118
float variable, 45, 47
floating point numbers,

comparing, 47, 63–64

396 C# 2005 For Dummies

28_597043 bindex.qxd 9/20/05 2:25 PM Page 396

floating point variable
converting temperature

using, 46
declaring, 45–46
description of, 44–45
limitations of, 46–49

floating window, CD100,
CD101

flow control
for loop, 90–92
foreach statement,

120–121
goto statement, 98
if statement, 72–79
nested loops, 92–95
switch control, 96–98
types of, 72
while loop, 80–90

F1 (Help), CD119–CD120
for loop, 90–92
foreach statement, 120–121,

CD72–CD75
form

control, adding to, 22
description of, 19–20
properties, changing, 23–24
writing own code for,

CD175–CD179
format controls, 207–208
Format() method, 206–210
format string, 160, 206
formatting output, 206–210.

See also controlling
output manually

Forms Designer, 19–22, 28
forward slashes (//), 34
fractions, 43–44
freeware program, 388
Frequently Asked Questions

sites, 8
F10 (Step Over), CD128
fully qualified name,

CD34–CD38
function call, 74
functional programming,

214–215, 216–217
functions. See also Main()

function
absolute value, 64
advantages of, 133–134
auto-complete feature and,

179–180

AverageAndDisplay(),
137–138

built-in, 177–179
C++ programming language

and, 380
calling initialization, 233
calling themselves, 280–281
class and, 163
concept and, 135
defining and using, 127–129
DisplayRatio(), 152–153
DisplayRounded

Decimal(), 141
implementing default

arguments, 140–142
initialization, calling, 233
InputInterestData(),

132, 133
InputPositive

Decimal(), 133–134
IsTerminateString(),

192–194
matching argument

definitions with usage,
138–139

mathematical, 64
member, 128
mixing with methods,

174–176
naming, 129, 139–140, 192
with no value, defining,

152–153
nonstatic member,

invoking, 167–169
nonvoid, 152
OutputInterestData(),

132–133
overloading, 139–140,

141–142, 243
parentheses and, 128
passing argument to, 136
passing multiple arguments

to, 136–138
passing object to, 163–165
passing value-type

arguments, 142–147
passing variable as out

argument to, 372–373
planning, 130
refactoring and, 129, 130
RemoveSpecialChars(),

204–205

returning value to caller,
147–148, 149

returning value using pass
by reference, 148–149

SetName(), 164, 166, 168
sin(), 147
Sort(), 125
static member, defining,

165–167
TestString(), 150–151
Update(), 145–146
user of, 140
variables within, 146–147
void, 152
word processor and, 135
WriteLine(), 160

• G •
garbage collector, 108, 272
generic class, methods in,

353–355, 356
generic code, writing,

348–349
generic collections

as efficient, 337
list of, 338
List<T>, 338–340
priority queue, 341–345
<T> and, 338
as type-safe, 336–337
writing, 340–341

generic factory, building
creating objects

generically, 362
default constructor

and, 363
GenericInterface

program, 359–361
one-parameter

construction, 362–364
generic interface, 357–358
generic iterator, CD91
generic method

constraints and, 356
in generic class, 356
in nongeneric class, 355

GenericCollections
program, 338–340

GenericInterface
program, 359–361

397Index

28_597043 bindex.qxd 9/20/05 2:25 PM Page 397

GenericMethod program,
354–355

generics feature, 2, 333, 381
{ get; } notation, 346
GetBalance() method,

226–227
GetValue() method, 319
GNU software, 388
goto statement, 98
graphical Windows

application, writing, 3

• H •
HAS_A relationship, 259–261
heap object, 380
Help Favorites, CD124
Help system, CD119–CD124
Help→Index, 177
hexadecimal numbers, CD59
hiding

base class method,
275–280, 374–375

window, CD103
HidingWithdrawal

program, 277–278
HidingWithdrawal

Polymorphically
program, 282–283

hierarchy of inherited
classes, 266

high-level computer
language, 12

How Do I button, CD124
Hungarian notation, 54

• I •
icon

Console Application, 30
lightning bolt, 25

if statement
else statement and, 75–77
embedded, 77–79
overview of, 72–75

immutability of string,
188–189

implementing interface,
305, 376

implicit type conversion,
67–68, 370–371

include file, 382
increment operator, 61–62

incrementing counting
variable in while loop,
83–84

indentation, using for
clarity, 75

index and array, 113
Index Help, CD120–CD122
indexer, CD76–CD80
Indexer program,

CD77–CD80
IndexOf() method, 204–205
infinite loop, 84, 89, 92
inheritance. See also

inheriting
as operator and, 264–265
BankAccount class and,

254–257
changing class of object

and, 261–262
class and, 252–253
ConstructorSavings

Account program,
269–271

default base class
constructor, invoking,
265–266

description of, 251
destructor and, 271–272
HAS_A relationship and,

259–261
hierarchy, restarting,

296–299
importance of, 253–254
interface and, 316–319
invalid cast and, 262–263
is operator and, 263–264
IS_A property and, 257–258,

260–261
polymorphism and, 284
power of, 273–274
problems of, 289–291

InheritanceExample
program, 252–253

InheritanceTest program,
296–299

inherited method,
overloading, 274–275

inheriting. See also
inheritance

base class polymorphically,
374–375

from multiple base classes,
in C++, 383

InheritingAConstructor
program, 265–266

Init() method, 172
initialization function,

calling, 233
initializing

data member, 172
object directly, 241–242
structure, 322
variable, 41–42

InputInterestData()
function, 132, 133

input/output (I/O), CD43
InputPositiveDecimal()

function, 133–134
installing items from CD to

hard drive, 386–387
instance, 103, 167, 216
instance method, 168
instantiating class locally, 249
int variable

description of, 41–42
fractions and, 43–44
Int32 structure and, 327,

328–330
types of, 42–43

integer, 41
integer truncation, 44
integer variable types, 42–43
Intel processor

Pentium, and floating point
numbers, 47

registers and, 52
interest, calculating, 73
interface

C++ and, 383–384
creating, 308–309
description of, 305–306
example of, 306–307
flexibility and, 315
implementing, 305, 376
inheriting, 316–319
nongeneric versus generic,

357–358
predefined, 309–310
usability of, 217–218

interface keyword, 305
internal member of

class, 225
internal protected

member of class, 225
intrinsic variable type, 52
Int32 structure, 327, 328–330

398 C# 2005 For Dummies

28_597043 bindex.qxd 9/20/05 2:25 PM Page 398

InvokeBaseConstructor
program, 268–269

InvokeMethod program,
167–168

I/O (input/output), CD43
IPrioritizable

interface, 346
is keyword, 285
is operator, 263–264, 337
IS_A property, 253, 257–258,

260–261
IsAllDigits program,

196–198
IsTerminateString()

function, 192–194
iterating

days of month, CD84–CD85
foreach collections,

CD72–CD75
through array, 192
through containers,

120–121
through directory of files,

CD55–CD61
iterator block

description of, 2
looping around, CD80–CD84
placement of, CD92–CD98
types of, CD88–CD91

iterator syntax, CD87–CD88
IteratorBlockIterator

program, CD95–CD98
IteratorBlocks program,

CD81–CD84

• J •
Java programming language,

13–14, 181, 379

• K •
key, CD78
keyboard shortcuts

Alt+Tab (switch program),
CD129

Ctrl+C (interrupt running
program), CD56

Ctrl+F5 (Start Without
Debugging), 159

Ctrl+K then Ctrl+X (view
menu of snippets), 34

Ctrl-Space (display auto-
complete), 26

F11 (Step Into), 238, CD130
F5 (Start Debugging), 159
F1 (Help), CD119–CD120
F10 (Step Over), CD128
Shift+F5 (Stop Debugging

menu), CD137
keywords
as operator, 264–265
base, 268–269, 280–281
interface, 305
is, 263–264, 285
new, 280
null, 353
out, 144, 145, 146, 148–149
override, 286–287
private, 222, 224, 225
ref, 144, 145, 148–149
sealed, 300
static, 110
string, 187
this, 171–176
virtual, 286–287
void, 152

• L •
late binding, 283
Length property of array, 117
level of abstraction, 214
levels of security, 224–225
lightning bolt icon, 25
linked list of objects, 234,

CD61–CD71
LinkedList class, 334
LinkedListContainer

program, CD62–CD71
LinkedListWithIterator

Block program,
CD92–CD95

List<T> generic collection,
338–340

Locals window, 239
logical comparison operators

compound, 64–66
floating point numbers and,

63–64
overview of, 62–63

long variable, 42
looping around iterator

block, CD80–CD84

looping statements
break and continue

commands and, 84–86
description of, 80
do...while, 84
for, 90–92
foreach command,

120–121
infinite, 84, 89, 92
nested, 92–95
scope rules, 89–90
while, 80–84, 86–89

LoopThroughFiles
program, CD55–CD61

• M •
machine language, 11–12
Main() function
Indexer class, CD79
overview of, 153–154
passing argument from DOS

prompt, 155–157
passing argument from

Visual Studio 2005,
159–162

passing argument from
window, 157–159

PassObjectToMember
Function program
and, 166

for PriorityQueue
program, 347–348

Main() method, 34–35
manually controlling output
Format() method, 206–210
overview of, 200–201
Trim() and Pad()

methods, 201–203
mathematical functions, 64
member function, 128
member of class

description of, 102–103
non-static, 128
public member,

221–224, 225
static, 110

member of object, accessing,
104–106

memory allocation in C++, 380
memory block,

unreachable, 272

399Index

28_597043 bindex.qxd 9/20/05 2:25 PM Page 399

‘methodName’: not all code
paths return a value
error message, 376–377

methods
abstract, 296
accessor, 226–227, 231
auto-complete feature and,

179–180
base class, overloading,

275–280, 374–375
class and, 163, 168
Compare(), 189–193
Concat(), 204–205
creating and renaming, 26
current object and, 169–176
Decimal.Round(),

228–230
defining, 167–169
definition of, 128, 168
Dequeue() method,

342, 350
Enqueue(), 342, 349–350
expanding full name,

168–169
external, 224
Format(), 206–210
generic class and,

353–355, 356
GetBalance(), 226–227
GetValue(), 319
IndexOf(), 204–205
inherited, overloading,

274–281
Init(), 172
instance, 168
Main(), 34–35
mixing with functions,

174–176
name of, 168–169, 274–275
namespace and, CD33
nongeneric class and, 355
object and, 168
overloading in base class,

374–375
Pad(), 201–203
renaming, 26
Replace(), 203–205
Split(), 198–200, 205–206
of structure, 323
Swap(), 353
ToInt32(), 196

TopQueue(), 350–351
ToString(), 323, CD26
Trim(), 196, 201–203
writing, CD118

Microsoft
Visual Basic, 12, 28
Visual Basic .NET, 379–380
Visual C# 2005, 385

Microsoft C++ programming
language

constructors and, 382–383
global data or functions

and, 380
interface and, 383–384
memory allocation and, 380
multiple inheriting and, 383
overview of, 379–380
pointer variables and, 381
template feature, 381–382
type checking and, 382
Unified Type System, 384
variable types and, 383

Microsoft .NET Framework
C# and, 13
Forms Designer and, 28
languages supported by, 14
overview of, 13–14, 379–380
tools, CD140–CD142

Microsoft Visual Studio. See
Visual Studio

Microsoft Visual Studio 2005.
See Visual Studio 2005

minus (-) sign, 31
misspelling variable

name, 368
MixingFunctionsAnd

Methods program,
174–176

MixingFunctionsAnd
MethodsWithXMLTags
program, 181–184

modifying string, 188–189
ModifyString program,

188–189
module, 225
modulo (%) operator, 58,

CD60
Mono implementation, 1
multiplication operator,

forms of, 67
MyException program,

CD17–CD20, CD22

• N •
The name ‘memberName’

does not exist in the
class or namespace
‘className’ error
message, 368–369

name of method, 168–169,
274–275

named iterator, CD89–CD90
namespace, CD29,

CD30–CD38
NameSpaceUse program,

CD36–CD38
naming

array, 120
class, 102
constant, 111, CD6
destructor, 271
file or directory, 156
function, 129, 139–140, 192
interface, 305, 306
object reference

variable, 120
project, 18
property, 231

naming conventions, 54,
CD117–CD118

navigating code, CD110
nested loop, 92–95
nested statement, 77
.NET Framework

C# and, 13
Forms Designer and, 28
languages supported by, 14
overview of, 13–14, 379–380
tools, CD140–CD142

.NET package,
downloading, 3

.NET redistributable
package, CD180

netable language, 299
new() constraint, 362
new keyword, 280
New Project dialog box,

16, 17
newline character, 106
nondeterministic

destruction, 272

400 C# 2005 For Dummies

28_597043 bindex.qxd 9/20/05 2:25 PM Page 400

nongeneric collections
boxing and unboxing,

336, 337
list of, 334–335
methods and, 355
overview of, 334
using, 335–336

nongeneric interface, 357–358
NongenericCollections

program, 335–336
nonstatic member function,

invoking, 167–169. See
also methods

nonvoid function, 152
notation, Hungarian, 54
notational C#, 190
null keyword and generic

class, 353
null object, 107
null reference, 150–151
null string, 52, 150
numbers

hexadecimal, CD59
series of, handling, 198–200

numeric constant, declaring,
54–55

numeric input, parsing,
196–198

numeric types, logical
comparisons for, 63

NUnit testing tool
debugging test code,

CD172–CD175
description of, 6, 389
running, CD164–CD165
unit testing and,

CD165–CD166
writing test class,

CD166–CD172

• O •
object

accessing members of,
104–106

adding to linked list,
CD67–CD68

arrays and, 118–120
in C++, 380
changing class of, 261–262
description of, 103–104, 233

discriminating between
numerous, 106

initializing directly, 241–242
linked list of, 234
method and, 168
passing by reference,

163–165
reachable, 108
removing from linked list,

CD68–CD69
structure object, 320–322
unreachable, 108

Object class, 327, 328, 330
object class, 264
object property, 110
object reference variable,

naming, 120
object-based language, 284
object-oriented

programming. See also
inheritance

abstraction, 213–215
access control, 218–219
C++ and, 380
C# support for, 219
classification, 215–217
polymorphism and, 284
usable interface, 217–218

opening
DOS window, 33
Output window, 18
Solution Explorer, 30, 160
Toolbox, 21

open-source software, 1
operating orders of

arithmetic operators,
58–59

operation, calculating type
of, 67–68

out keyword, 144, 145, 146,
148–149

output, controlling manually
Format() method, 206–210
overview of, 200–201
Trim() and Pad()

methods, 201–203
Output window, 18, 19
OutputFormatControls

program, 208–209
OutputInterestData()

function, 132–133

OutputName() function,
164, 165, 166

overloading
base class method, 275–280
constructor, 243–245
function, 139–140,

141–142, 243
inherited method, 274–281
method in base class,

374–375
override keyword, 286–287
overriding Exception class,

CD22–CD26

• P •
PackageFactory program,

358–359
Pad() method, 201–203
parameter

auto-complete feature and,
178–179

implementing default,
140–142

matching definitions with
usage, 138–139

multiple, passing to
function, 136–138

as part of name of function,
274–275

passing from DOS prompt,
155–157

passing from Visual Studio
2005, 159–162

passing from window,
157–159

passing to default base
class constructor,
266–269

passing to function, 136
value-type, passing by

reference, 143–147
value-type, passing by

value, 142–143
parentheses

cast operator and, 68, 69
functions and, 128
order of precedence and, 59

ParseSequenceWithSplit
program, 198–200

401Index

28_597043 bindex.qxd 9/20/05 2:25 PM Page 401

parsing
characters out of string,

194–196
numeric input, 196–198

partial class, CD177–CD178
PassByReference program,

143–144
PassByReferenceError

program, 145–146
PassByValue program,

142–143
passing. See also passing

argument
current object, 169–171
object by reference,

163–165
variable as out argument

to function, 372–373
passing argument

to default base class
constructor, 266–269

from DOS prompt, 155–157
to function, 136
multiple, to function,

136–138
value-type, by reference,

143–147
value-type, by value,

142–143
from Visual Studio 2005,

159–162
from window, 157–159

PassObject program,
163–164

PassObjectToMember
Function program,
165–166

path, CD49
PDP-8 computer, 61
Pentium processor and

floating point
numbers, 47

pipe, double (||) operator, 66
pipe (|) operator, 65
plus (+) operator, strings

and, 52
plus (+) sign, code region

and, 31
pointer, 380–381

pointer variable, 381
PolymorphicInheritance

program, 286–287
polymorphism

declared type and, 283–284
description of, 219, 251, 283
example of, 282–283
is keyword and, 285
virtual keyword and,

286–287
Portable .NET

implementation, 1
postincrement operator,

61, 62, 92
predefined interface, 309–310
preincrement operator, 62
preventing confusion in

code, 59, 60
Preview Code Changes

pane, 26
PriorityQueue class. See

also PriorityQueue
program

constraints for, 351–352
Dequeue() method, 350
Enqueue() method,

349–350
members of, 351
null value for type T and,

352–353
TopQueue() utility

method, 350–351
underlying queues, 349

PriorityQueue program
code for, 342–345
IPrioritizable

interface, 346
Main() function for,

347–348
Package class, 345–346

private keyword,
222, 224, 225

process, CD173
processor upchuck, 153
program. See also console

application; specific
programs

action, adding, 25–27
breaking, CD132–CD135
building and running, 18–20

console, creating, 29–31
converting class into,

CD114–CD115
creating, 15
description of, 12
developing, CD142
dividing into multiple

assemblies, CD29–CD30
dividing into multiple

source files, CD28–CD29
executable, 12, 373
executing, 19, 32, 35
Forms Designer and, 20–24
freeware, 388
rebuilding and running,

24–25, 373–374
running on different

machines, CD180
shareware, 388
source files for example,

387–388
template, creating, 15–18
testing, 27–28

project
creating, 30
description of, 16
displaying, CD108–CD110
naming, 18
properties of, accessing,

160–161
startup, CD30

project file, CD29, CD107
Project→Properties, 279
promotion, 67–68
properties

of control, 23–24
inheritance and, 251
in interface declaration, 346
IS_A, 253
of project, accessing,

160–161, CD109–CD110
Properties window, 23
protected member of

class, 225
protection level, specifying,

371–372
pseudocode, 190
public member of class,

221–224, 225
public modifier, 103

402 C# 2005 For Dummies

28_597043 bindex.qxd 9/20/05 2:25 PM Page 402

• Q •
Queue class, 334
queue data structure

description of, 341
PriorityQueue program,

342–345
rules for, 341–342

quotation marks, string
variable compared to
char variable, 53

• R •
reachable object, 108
reading comments, 129
ReadLine() command, 74
real number, 44
real type, 283
rearranging windows,

CD103–CD104
rebuilding program, 24–25,

373–374
recursing, 280
redundancy, reducing, 292
ref keyword, 144, 145,

148–149
Refactor menu (Visual Studio

2005), 26, 133
refactoring, 129, 130, 133
Refactor→Rename, 26
reference, passing value-type

argument by, 143–147
reference type variable

boxing, 330–331
description of, 53, 150–151,

320
operators defined on,

107–108
ReferencingThis

Explicitly program,
172–174

region, adding, 31
registers, 52
RemoveSpecialChars()

function, 204–205
RemoveWhiteSpace

program, 204–205

RemoveWhiteSpaceWith
Split program, 205–206

removing
breakpoint, CD134
character from end of

string, 201
object from linked list,

CD68–CD69
renaming method, 26
Replace() method, 203–205
resizing text box, 22
resources on C#. See also

Web sites
Brandon Bray’s blog, 382
browsing online help, 177
Web sites, 7–8

restarting class hierarchy,
296–299

rethrowing error, CD20–CD21
return statement, 147–148,

149
returning error

overview of, CD1–CD3
problems with, CD7–CD8

returning value, 147–149
reuse, 254
rounding, 44
run-time error

catch blocks, assigning
multiple, CD15–CD17

description of, 262, CD126
error codes and, CD4–CD7
exception mechanism for,

CD1
returning, CD1–CD3,

CD7–CD8
run-time type, 283

• S •
Save button, 24
scope of variable, 89–90, 369
sealed keyword, 300
sealing class, 375
Search facility, 155
Search Help, CD122–CD123
Search Results window, 156
security, levels of, 224–225
series of numbers, handling,

198–200

SetName() function, 164,
166, 168

setup project, CD180
shareware program, 388
SharpDevelop program, 6,

385, 389, CD142–CD149
Shift+F5 (Stop Debugging

menu), CD137
short-circuit evaluation, 66
side effect of property, 232
signed integer variable, 43
Simple Factory class,

358–359
simple operators, 57–58
simple value type, 327
SimpleSavingsAccount

program, 254–257
sin() function, 147
single stepping,

CD128–CD131
smart tag, 22
snaplines, 22
snippets, 34–35
software

elegance in, 261
GNU, 388
open-source, 1
trial, demo, or evaluation

versions of, 388
solution, CD29, CD107
Solution Explorer, 19, 30, 160,

CD106–CD115
Sort() function, 125
sorting arrays of objects,

122–126
SortInterface program

code for, 311–314
explanation of, 314–315
interface, creating, 308–309
output of, 315–316
overview of, 307
predefined interface,

309–310
SortStudents program,

123–124
source file

collecting into namespace,
CD30–CD38

description of, 12, 387–388
dividing program into

multiple, CD28–CD29

403Index

28_597043 bindex.qxd 9/20/05 2:25 PM Page 403

source program, creating,
30–31

Southern Naming
Convention, CD6

special characters, 50–51
Split() method, 198–200,

205–206
Stack class, 335
stack object, 380
stack trace, CD13,

CD135–CD136
stacking windows,

CD104–CD106
starting

console program by double-
clicking, 157–158

constructor from debugger,
238–241

program, 19, 32, 35
Visual Studio, 16

Start→Programs→
Accessories→Command
Prompt, 155

startup project, CD30
static keyword, 110
static member function,

defining, 165–167
static property, 232
stepping over, CD129
StreamReader class,

CD50–CD54
StreamWriter class,

CD45–CD50
string

addition operator and, 188
Compare() method and,

189–193
empty, 52, 150
Format() method, 206–210
modifying, 188–189
null, 52, 150
numeric input, parsing,

196–198
parsing characters out of,

194–196
Replace() method,

203–205
series of numbers,

handling, 198–200
Split() method, 205–206

switch() control and,
193–194

Trim() and Pad()
methods, 201–203

white space and, 195
String class, 187
string constant, 189
string keyword, 187
string objects, 153
string type, as reference

type, 328
string variable, 51–52, 53
StringToCharAccess

program, 194–195
structure

class compared to, 327
description of, 320–322, 384
features of, 323–326
methods of, 323
predefined types, 327–328
type unification and,

328–330
structure constructor,

322–323
StructureExample

program, 324–326
subclass, 216, 274
‘subclassName’: cannot

inherit from sealed class
‘baseclassName’ error
message, 375

‘subclassName.methodName’
hides inherited member
‘baseclassName.method
Name.’ Use the new
keyword if hiding was
intended error message,
374–375

subexpression, 67
superclass, extracting, 291
Swap() method, 353
switch, 154
switch control, 96–98,

193–194
syntax for structure

declaration, 320
syntax of arrays, 117–118
System Library, 177–179
system requirements for

CD-ROM, 385–386
System.IO namespace,

CD43, CD44

• T •
<T> and generic

collections, 338
tabbed window, CD102
template, creating, 15–18,

29–31
template, in C++, 381–382
Templates pane, Console

Application icon, 30
terminating program,

20, 373–374
ternary operator, 69–70
testing

after internal changes to
class, 230

code on different machines,
CD180

console application, 31
NUnit tool, 389
variable for different

values, 96–98
TestString() function,

150–151
Textbox control, 22, 23
TextPad editor

Build C# Debug tool,
adding, CD153–CD155

C# document class,
creating, CD152–CD153

compiler errors and,
CD160–CD161

overview of, 6, 389,
CD149–CD152

Parameters fields items,
CD156–CD160

Release build tool,
configuring, CD156

tools configuration options,
CD151

tools, configuring,
CD161–CD164

this keyword, 171–174
three-slash (///) comment,

181, CD117
throwing exception,

CD17–CD19
tight coupling, 359
tilde (~), 271
ToDecimal() command, 74

404 C# 2005 For Dummies

28_597043 bindex.qxd 9/20/05 2:25 PM Page 404

ToInt32() method, 196
toolbar in Forms Designer, 19
Toolbox, controls in, 21–22
Tools→Command Window, 33
Tools→Options→Projects

and Solutions→
General, 18

TopQueue() utility method,
350–351

ToString() method,
323, 330, CD26

Trim() method, 196,
201–203

troubleshooting. See also
error message

CD-ROM, 389–390
fixed-value array and, 113
overview of, 367

truncation, 44
try...catch statement, 210
type-safety, 336–337, 381
TypeUnification program,

328–330

• U •
uint variable, 43
UML (Unified Modeling

Language), 288, 290,
CD106

Unable to copy the file
‘programName.exe’ to
‘programName.exe.’ The
process cannot... error
message, 373–374

unary negative operator, 58
unboxing

nongeneric collections and,
336, 337

reference type variable and,
331

Unified Modeling Language
(UML), 288, 290, CD106

Unified Type System, 384
uninitialized reference, 107
Unix implementations, 1
unreachable object, 108
unsigned integer variable, 43
up conversion, 68
Update() function, 145–146

Use of unassigned local
variable ‘n’ error
message, 372–373

user of function, 140

• V •
value

defining function with no,
152–153

multiple, returning from
single function, 149

passing value-type
argument by, 142–143

returning to caller, 147–148,
149

returning using pass by
reference, 148–149

value type variable
boxing, 149, 330–331
description of, 52–53, 320

variable
bool type, 49, 64–66
changing type of, 55–56
char type, 50–51, 53
class compared to

member, 128
counting, in for loop, 92
counting, incrementing in

while loop, 83–84
decimal type, 48–49
declaring, 40, 42, 319–320,

368, 369
description of, 39
double, 45
float, 45, 47
floating point, 44–49
within function, 146–147
initializing, 41–42
int, 41–44, 327, 328–330
integer types, 42–43
intrinsic type, 52
long, 42
name of, 54, 368
object reference,

naming, 120
passing as out argument to

function, 372–373
pointer, 381
reference, 53, 150–151, 320,

330–331

scope of, 89–90
signed integer, 43
string compared to

char, 53
string type, 51–52, 53
testing for different values,

96–98
types of, 369–371, 383
uint, 43
unsigned integer, 43
value-type, 52–53, 142, 320,

330–331
VariableArrayAverage

program, 115–116, 117
variable-length array,

114–118
VehicleDataOnly program,

104–105
View menu, CD100, CD101
View→Properties Window, 23
View→Solution Explorer, 160
View→Toolbox, 21
virtual keyword, 286–287
Visual Basic, 12, 28
Visual Basic .NET, 379–380
Visual C# 2005, 385
Visual Studio

Application Wizard, 16, 17,
CD32

auto-complete feature,
176–184

generating XML
documentation with, 185

history of, 14–15
starting, 16
versions of, 1, 3

Visual Studio 2005
CD-ROM and, 385
class, adding, CD110–CD111
Class Designer, CD106
customizing window layout,

CD100–CD106
DataTip, CD134–CD135
debugging tools,

CD126–CD138
Help system, CD119–CD125
overview of, CD99–CD100,

CD139
passing argument from,

159–162
Refactor menu, 26, 133

405Index

28_597043 bindex.qxd 9/20/05 2:25 PM Page 405

Visual Studio 2005 (continued)
SharpDevelop compared to,

CD143–CD144
Solution Explorer, 19, 30,

160, CD106–CD115
void function, 152
void keyword, 152
VSDebug program,

CD126–CD127
VSInterface program,

CD112–CD114, CD115

• W •
warning. See also error

message
fixed-value array and, 113
fixing, 279
overview of, 367
studying, CD127–CD128

Web Services and .NET, 14
Web sites

author, 8, 390
DotGNU, 1
languages supported by

.NET, 14
Mono, 1
.NET Framework tools,

CD140
.NET package, 3

NUnit testing tool, CD164
refactoring, 133
resources on C#, 7–8
SharpDevelop program,

CD142
Wiley Product Technical

Support, 390
while loop
break statement and,

86–89
common mistakes in, 92
do...while loop, 84
overview of, 80–84

white space, 195
Wiley Product Technical

Support, 390
window

layout, customizing,
CD100–CD106

passing argument from,
157–159

Windows Forms (WinForms),
15, 18–20

word processor, functions
for, 135

wrapper class, 342
WriteLine() command, as

function call, 74, 160
writing

code, CD115–CD119
collection class, CD61–CD71

constant, CD6
forms code, CD175–CD179
generic code, 348–349
generic collections, 340–341
graphical Windows

application, 3
method, CD118
test class for NUnit testing

tool, CD166–CD172

• X •
xcopy deployment, CD180
XML (eXtensible Markup

Language), 180–185

• Y •
yield break statement,

CD88
yield return statement,

CD87–CD88

• Z •
zero reference, 150–151
zero, trailing, showing, 83

406 C# 2005 For Dummies

28_597043 bindex.qxd 9/20/05 2:25 PM Page 406

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software
packet(s) included with this book “Book”. This is a license agreement “Agreement” between you
and Wiley Publishing, Inc. “WPI”. By opening the accompanying software packet(s), you acknowl-
edge that you have read and accept the following terms and conditions. If you do not agree and do
not want to be bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license to
use one copy of the enclosed software program(s) (collectively, the “Software”) solely for
your own personal or business purposes on a single computer (whether a standard com-
puter or a workstation component of a multi-user network). The Software is in use on a
computer when it is loaded into temporary memory (RAM) or installed into permanent
memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights not expressly
granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and to the
compilation of the Software recorded on the disk(s) or CD-ROM “Software Media”. Copyright
to the individual programs recorded on the Software Media is owned by the author or other
authorized copyright owner of each program. Ownership of the Software and all proprietary
rights relating thereto remain with WPI and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes, or (ii)
transfer the Software to a single hard disk, provided that you keep the original for
backup or archival purposes. You may not (i) rent or lease the Software, (ii) copy or
reproduce the Software through a LAN or other network system or through any com-
puter subscriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may transfer
the Software and user documentation on a permanent basis, provided that the transferee
agrees to accept the terms and conditions of this Agreement and you retain no copies. If
the Software is an update or has been updated, any transfer must include the most
recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual requirements
and restrictions detailed for each individual program in the About the CD-ROM appendix of
this Book. These limitations are also contained in the individual license agreements recorded
on the Software Media. These limitations may include a requirement that after using the pro-
gram for a specified period of time, the user must pay a registration fee or discontinue use.
By opening the Software packet(s), you will be agreeing to abide by the licenses and restric-
tions for these individual programs that are detailed in the About the CD-ROM appendix and
on the Software Media. None of the material on this Software Media or listed in this Book
may ever be redistributed, in original or modified form, for commercial purposes.

29_597043 eula.qxd 9/20/05 2:26 PM Page 407

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in materials
and workmanship under normal use for a period of sixty (60) days from the date of pur-
chase of this Book. If WPI receives notification within the warranty period of defects in
materials or workmanship, WPI will replace the defective Software Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE
SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT WARRANT THAT THE FUNC-
TIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other rights that
vary from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and workman-
ship shall be limited to replacement of the Software Media, which may be returned to
WPI with a copy of your receipt at the following address: Software Media Fulfillment
Department, Attn.: C# 2005 For Dummies, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six weeks for delivery.
This Limited Warranty is void if failure of the Software Media has resulted from accident,
abuse, or misapplication. Any replacement Software Media will be warranted for the
remainder of the original warranty period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (including
without limitation damages for loss of business profits, business interruption, loss of
business information, or any other pecuniary loss) arising from the use of or inability to
use the Book or the Software, even if WPI has been advised of the possibility of such
damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for conse-
quential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or on
behalf of the United States of America, its agencies and/or instrumentalities “U.S.
Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes
and supersedes all prior agreements, oral or written, between them and may not be modified
or amended except in a writing signed by both parties hereto that specifically refers to this
Agreement. This Agreement shall take precedence over any other documents that may be in
conflict herewith. If any one or more provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other pro-
vision shall remain in full force and effect.

29_597043 eula.qxd 9/20/05 2:26 PM Page 408

GNU General Public License

Version 2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software--to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free soft-
ware (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any prob-
lems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

29_597043 eula.qxd 9/20/05 2:26 PM Page 409

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions for Copying, Distribution and Modification

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and a “work based on the
Program” means either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or with modifications
and/or translated into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms
of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no
charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally print
such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sec-
tions when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

29_597043 eula.qxd 9/20/05 2:26 PM Page 410

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of deriva-
tive or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a com-
plete machine-readable copy of the corresponding source code, to be distributed under
the terms of Sections 1 and 2 above on a medium customarily used for software inter-
change; or,

c) Accompany it with the information you received as to the offer to distribute correspond-
ing source code. (This alternative is allowed only for noncommercial distribution and
only if you received the program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all mod-
ules it contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompanies the exe-
cutable.

If distribution of executable or object code is made by offering access to copy from a desig-
nated place, then offering equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third parties are not compelled to
copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modify-
ing or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

29_597043 eula.qxd 9/20/05 2:26 PM Page 411

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of fol-
lowing the terms and conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserv-
ing the free status of all derivatives of our free software and of promoting the sharing and
reuse of software generally.

29_597043 eula.qxd 9/20/05 2:26 PM Page 412

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIB-
UTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

29_597043 eula.qxd 9/20/05 2:26 PM Page 413

29_597043 eula.qxd 9/20/05 2:26 PM Page 414

